SUGGESTED SOLUTIONS TO HOMEWORK 11

1. Section 6.4

Exercise 1. Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.

(a) Every self-adjoint operator is normal.

(b) Operators and their adjoints have the same eigenvectors.

(c) If T is an operator on an inner product space V, then T is normal if and only if $[T]_{\beta}$ is normal, where β is any ordered basis for V.

(d) A real or complex matrix A is normal if and only if L_A is normal.

(e) The eigenvalues of a self-adjoint operator must all be real.

(f) The identity and zero operators are self-adjoint.

(g) Every normal operator is diagonalizable.

(h) Every self-adjoint operator is diagonalizable.

Solution. (a) True.

- (b) False.
- (c) False.
- (d) True.
- (e) True.
- (f) True.
- (g) False.
- (h) True.

Exercise 2. Let $\mathsf{T}(f) = f'$ on the linear space $\mathsf{V} = \mathsf{P}_2(\mathbb{R})$ with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) \, dt.$$

Determine whether T is normal, self-adjoint, or neither. If possible, produce an orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.

Solution. Let $\beta := \{1, \sqrt{3}(2t-1), \sqrt{6}(6t^2-6t+1)\}$, then β is an orthonormal basis of V. Since

$$\begin{pmatrix} 0 & 2\sqrt{3} & 0 \\ 0 & 0 & 6\sqrt{2} \\ 0 & 0 & 0 \end{pmatrix},$$

therefore T is neither normal nor self-adjoint.

Exercise 3. Let T be a normal operator on a finite-dimensional complex inner product space V, and let W be a subspace of V. Prove that if W is T-invariant, then W is also T^* -invariant.

Solution. Since T is a normal operator and V is a finite-dimensional complex inner product space, then there exists an orthonormal basis β for V consisting of eigenvectors of T. Denote $n := \dim V$ and $\beta := \{v_1, ..., v_n\}$, then there exist $\lambda_1, ..., \lambda_n \in \mathbb{C}$ such that $\mathsf{T}v_i = \lambda_i v_i$ for i = 1, ..., n. Since W is a subspace of V and

it is T-invariant, then without lose of generality, we assume $\operatorname{span}\{v_1, ..., v_m\} = W$ for $m \in \mathbb{N}$ and $1 \le m \le n$. Let $w \in W$, then there exist $\alpha_1, ..., \alpha_m \in \mathbb{C}$ such that

$$w = \sum_{i=1}^{m} \alpha_i v_i.$$

Therefore by $\mathsf{T}^* v_i = \overline{\lambda}_i v_i$ for i = 1, ..., n, we have

$$\mathsf{T}^*(w) = \sum_{i=1}^m \alpha_i \bar{\lambda}_i v_i \in \mathsf{W},$$

which implies that W is also T*-invariant.

Exercise 4. Let T be a normal operator on a finite-dimensional inner product space V. Prove that $N(T) = N(T^*)$ and $R(T) = R(T^*)$.

Solution. Let $v \in N(T)$, then T(v) = 0, which implies that v is an eigenvector of T corresponding to eigenvalue 0, therefore v is also an eigenvector of T^* corresponding to 0. This proves that $N(T) \subset N(T^*)$. Similarly, we also have $N(T^*) \subset N(T)$ which implies that $N(T) = N(T^*)$.

Let $w \in \mathsf{R}(\mathsf{T})$, then there exists $v_w \in \mathsf{V}$ such that $w = \mathsf{T}(v_w)$, therefore for $v \in \mathsf{N}(\mathsf{T})$, we have

$$\langle w, v \rangle = \langle v_w, \mathsf{T}^*(v) \rangle,$$

since $N(T) = N(T^*)$, then

$$\langle w, v \rangle = 0$$

which implies that $w \in \mathsf{N}(\mathsf{T})^{\perp}$. Since $\mathsf{R}(\mathsf{T}^*) = \mathsf{N}(\mathsf{T})^{\perp}$, then we have $\mathsf{R}(\mathsf{T}) \subset \mathsf{R}(\mathsf{T}^*)$. Similarly, we also have $\mathsf{R}(\mathsf{T}^*) \subset \mathsf{R}(\mathsf{T})$ which implies that $\mathsf{R}(\mathsf{T}) = \mathsf{R}(\mathsf{T}^*)$.

Exercise 5. Let T be a normal operator on a finite-dimensional real inner product space V whose characteristic polynomial splits. Prove that V has an orthonormal basis of eigenvectors of T. Hence prove that T is self-adjoint.

Solution. It suffices to prove that V has an orthonormal basis of eigenvectors of T. Denote $n := \dim V$. Since the characteristic polynomial of V splits, then by Schur's theorem, there exists an orthonormal basis $\beta = \{v_1, ..., v_n\}$ for V such that $[\mathsf{T}]_{\beta} = U$ is upper triangular. Let us use induction on $n \in \mathbb{N}$ to prove β is also the set of eigenvectors of T.

For n = 1, we clearly have that v_1 is an eigenvector of T.

Suppose there exists $k \in \mathbb{N}$ such that for all real inner product space V with $1 \leq n \leq k-1$, β is the set of eigenvectors of T. Consider n = k, since span $\{v_1, ..., v_{k-1}\}$ is an inner product space with dimension k-1, by the induction hypothesis, we have $v_1, ..., v_{k-1}$ are eigenvectors of T. By Schur's theorem, we have

$$\mathsf{T}(v_j) = U_{jj}v_j,$$

for $1 \leq j \leq k - 1$. Then

$$\mathsf{T}^*(v_j) = \bar{U_{jj}}v_j,$$

for $1 \leq j \leq k - 1$. Moreover, we have

$$\mathsf{T}(v_k) = \sum_{j=1}^k U_{jk} v_j,$$

then

$$U_{jk} = \langle \mathsf{T}(v_k), v_j \rangle = \langle v_k, \bar{U_{jj}}v_j \rangle = 0,$$

for $1 \leq j \leq k-1$, therefore

$$\mathsf{T}(v_k) = U_{kk} v_k,$$

which implies that v_k is also an eigenvectors of T. This proves that β is the set of eigenvectors of T.

Exercise 6. Let V be a finite-dimensional real inner product space, and let U and T be self-adjoint linear operators on V such that UT = TU. Prove that there exists an orthonormal basis for V consisting of vectors that are eigenvectors of both U and T.

Solution. Let us use induction on the dimension $n \in \mathbb{N}$ of V.

For n = 1, the conclusion is clearly true.

Suppose the conclusion is true for $1 \leq n \leq k-1$ for some $k \in \mathbb{N}$. Consider n = k. Let E_{λ} be an eigenspace of T with eigenvalue λ . Then E_{λ} is T-invariant and U-invariant. Indeed, it is clear that E_{λ} is T-invariant, in addition, for $v \in \mathsf{E}_{\lambda}$, we have

$$\mathsf{TU}(v) = \mathsf{UT}(v) = \lambda \mathsf{U}(v),$$

which implies that $U(v) \in E_{\lambda}$. If $E_{\lambda} = V$, then since U are self-adjoint operator, there exists an orthonormal basis β for V consisting eigenvectors of U. Moreover, by the choice of V, it is clear that β is also a set of eigenvectos of T. This proves β is an orthonormal basis for V consisting of eigenvectors of U and T. Otherwise, for $E_{\lambda} \subsetneq V$, then by the induction hypothesis, there exists an orthonormal basis β' for E_{λ} consisting of eigenvectors of $UI_{E_{\lambda}}$ and $TI_{E_{\lambda}}$, where $I_{E_{\lambda}}$ is the projection from V to E_{λ} . Moreover, let us consider $(E_{\lambda})^{\perp}$, we claim that $(E_{\lambda})^{\perp}$ is also T-invariant and U-invariant. Indeed, it is clear that $(E_{\lambda})^{\perp}$ is T-invariant, in addition, for $w \in (E_{\lambda})^{\perp}$ and $v \in E_{\lambda}$, since E_{λ} is U-invariant, we have

$$\langle \mathsf{U}(w), v \rangle = \langle w, \mathsf{U}(v) \rangle = 0,$$

which implies that $U(v) \in (\mathsf{E}_{\lambda})^{\perp}$. Then by the induction hypothesis, there exists an orthonormal basis β'' for $(\mathsf{E}_{\lambda})^{\perp}$ consisting of eigenvectors of $U(\mathsf{I} - \mathsf{I}_{\mathsf{E}_{\lambda}})$ and $\mathsf{T}(\mathsf{I} - \mathsf{I}_{\mathsf{E}_{\lambda}})$. Therefore let $\beta := \beta' \cup \beta''$, we have β is an orthonormal basis for V consisting of eigenvectors of U and T.

2. Section 6.5

- Q1. Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
 - (a) Every unitary operator is normal.
 - (b) Every orthogonal operator is diagonalizable.
 - (c) A matrix is unitary if and only if it is invertible.
 - (d) If two matrices are unitarily equivalent, then they are also similar.
 - (e) The sum of unitary matrices is unitary.
 - (f) The adjoint of a unitary operator is unitary.
 - (g) If T is an orthogonal operator on V, then $[T]_{\beta}$ is an orthogonal matrix for any ordered basis β for V.
 - (h) If all the eigenvalues of a linear operator are 1, then the operator must be unitary or orthogonal.
 - (i) A linear operator may preserve the norm, but not the inner product.
- Sol: (a) True.
 - (b) False.

- (c) False.
- (d) True.
- (e) False.
- (f) Ture.
- (g) False.(h) False.
- (i) False.
- Q2(c). For the following matrix A, find an orthogonal or unitary matrix P and a diagonal matrix D such that $P^*AP = D$.

$$\begin{pmatrix} 2 & 3-3i \\ 3+3i & 5 \end{pmatrix}$$

Sol. The characteristic polynomial of A is

$$(2-t)(5-t) - (3-3i)(3+3i) = t^2 - 7t - 8 = (t-8)(t+1).$$

Hence, -1, 8 are all the eigenvalues of A. Note that for any scalars a, b,

$$3\begin{pmatrix} -2 & 1-i\\ 1+i & -1 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} -6 & 3-3i\\ 3+3i & -3 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = (A-8I) \begin{pmatrix} a\\ b \end{pmatrix} = \vec{0}$$

if and only if b = (1 + i)a. In particular, u = (1, 1 + i) is an eigenvector of A corresponding to eigenvalue 8.

$$||u|| = \sqrt{1\overline{1} + (1+i)\overline{(1+i)}} = \sqrt{3}.$$

On the other hand, for any scalars a, b,

$$3\begin{pmatrix} 1 & 1-i\\ 1+i & 2 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = \begin{pmatrix} 3 & 3-3i\\ 3+3i & 6 \end{pmatrix} \begin{pmatrix} a\\ b \end{pmatrix} = (A+I) \begin{pmatrix} a\\ b \end{pmatrix} = \vec{0}$$

if and only if a = (i - 1)b. In particular, v = (i - 1, 1) is an eigenvector of A corresponding to eigenvalue -1.

$$||v|| = \sqrt{(i-1)\overline{(i-1)} + 1\overline{1}} = \sqrt{3}.$$

Then

$$P = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & i-1\\ i+1 & 1 \end{pmatrix}$$

is a unitary matrix and

$$D = \begin{pmatrix} 8 & 0 \\ 0 & -1 \end{pmatrix}$$

is a diagonal matrix such that $P^*AP = D$.

- Q7. Prove if T is a unitary operator on a finite-dimensional inner product space V, then T has a unitary square root.
- Sol. Let β be the standard ordered basis and $A = [T]_{\beta}$. By Theorem 6.19 we have a unitary matrix Q and a diagonal matrix D s.t.

$$A = Q^* DQ.$$

Since A is unitary, we have $A^*A = Q^*D^*QQ^*DQ = Q^*D^*DQ = I$ which implies $D^*D = I$. By the fact that D is diagonal, denote

$$D = \begin{pmatrix} |d_1|e^{i\theta_1} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & |d_n|e^{i\theta_n}. \end{pmatrix}$$

Then we have $|d_j| = 1$. Let $U = Q^* \begin{pmatrix} \sqrt{|d_1|}e^{\frac{i\theta_1}{2}} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \sqrt{|d_n|}e^{\frac{i\theta_n}{2}} \end{pmatrix} Q$. We can

varify U satisfies our requirements.

Q10. Let A be an $n \times n$ real symmetric or complex normal matrix. Prove

$$\operatorname{tr}(A) = \sum_{i=1}^{n} \lambda_i \qquad \operatorname{tr}(A^*A) = \sum_{i=1}^{n} |\lambda_i|^2,$$

where the λ_i 's are the eigenvalues of A.

Sol. There are unitary matrix Q and diagonal matrix D s.t. $A = Q^*DQ$ and the diagonal elements of D are eigenvalues of A. Then we have

$$tr(A) = tr(Q^*DQ) = tr(Q^*QD) = tr(D) = \sum_{i=1}^n \lambda_i.$$
$$tr(A^*A) = tr(Q^*D^*QQ^*DQ) = tr(D^*D) = tr(H) = \sum_{i=1}^n |\lambda_i|^2.$$

Q12. Let A be an $n \times n$ real symmetric or complex normal matrix. Prove that

$$\det(A) = \prod_{i=1}^{n} \lambda_i,$$

where the λ_i 's are the (not necessarily distinct) eigenvalues of A.

Sol. There are unitary matrix Q and diagonal matrix D s.t. $A = Q^*DQ$ and the diagonal elements of D are eigenvalues $\{\lambda_i\}_{i=1}^n$ of A. Then

$$\det(A) = \det(Q^*DQ) = \det(D) = \prod_{i=1}^n \lambda_i.$$

- Q15. Let U be a unitary operator on an inner product space V, and let W be a finitedimensional U-invariant subspace of V. Prove that
 - (a) U(W) = W; [(b)] W^{\perp} is U-invariant.
- Sol. (a) Since U is W-invariant, we have $U(W) \subseteq W$. It then suffices to show that $W \subseteq U(W)$. Consider $U_W : W \to W$, the restriction of U on W. Then U_W is linear. As U is
 - unitary, ||U(v)|| = ||v|| for all $v \in V$. In particular, $||U_W(w)|| = ||U(w)|| = ||w||$ for all $w \in$. So U_W is one-to-one. As W is finite dimensional, U_W is then onto, and so $W \subseteq U_W(W) = U(W)$. Hence we have U(W) = W.
 - (b) Let $v \in W^{\perp}$. Then $\langle v, w \rangle = 0$ for all $w \in W$. Let $w \in W$. By the previous question there exists $w' \in W = U(W)$ such that w = Uw'. Then $\langle Uv, w \rangle = \langle v, U^*Uw' \rangle = \langle v, w' \rangle = 0$. As $w' \in W$ is arbitrary, $Uv \in W^{\perp}$. As $v \in W^{\perp}$ is arbitrary, W^{\perp} is U-invariant.