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1. section 6.4

Exercise 1. Label the following statements as true or false. Assume that the
underlying inner product spaces are finite-dimensional.

(a) Every self-adjoint operator is normal.
(b) Operators and their adjoints have the same eigenvectors.
(c) If T is an operator on an inner product space V, then T is normal if and only

if [T]β is normal, where β is any ordered basis for V.
(d) A real or complex matrix A is normal if and only if LA is normal.
(e) The eigenvalues of a self-adjoint operator must all be real.
(f) The identity and zero operators are self-adjoint.
(g) Every normal operator is diagonalizable.
(h) Every self-adjoint operator is diagonalizable.

Solution. (a) True.
(b) False.
(c) False.
(d) True.
(e) True.
(f) True.
(g) False.
(h) True.

Exercise 2. Let T(f) = f ′ on the linear space V = P2(R) with inner product

⟨f, g⟩ =
∫ 1

0

f(t)g(t) dt.

Determine whether T is normal, self-adjoint, or neither. If possible, produce an
orthonormal basis of eigenvectors of T for V and list the corresponding eigenvalues.

Solution. Let β := {1,
√
3(2t − 1),

√
6(6t2 − 6t + 1)}, then β is an orthonormal

basis of V. Since 0 2
√
3 0

0 0 6
√
2

0 0 0

 ,

therefore T is neither normal nor self-adjoint.

Exercise 3. Let T be a normal operator on a finite-dimensional complex inner
product space V, and let W be a subspace of V. Prove that if W is T-invariant,
then W is also T∗-invariant.

Solution. Since T is a normal operator and V is a finite-dimensional complex
inner product space, then there exists an orthonormal basis β for V consisting
of eigenvectors of T. Denote n := dimV and β := {v1, ..., vn}, then there exist
λ1, ..., λn ∈ C such that Tvi = λivi for i = 1, ..., n. Since W is a subspace of V and
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it is T-invariant, then without lose of generality, we assume span{v1, ..., vm} = W
for m ∈ N and 1 ≤ m ≤ n. Let w ∈ W, then there exist α1, ..., αm ∈ C such that

w =

m∑
i=1

αivi.

Therefore by T∗vi = λ̄ivi for i = 1, ..., n, we have

T∗(w) =

m∑
i=1

αiλ̄ivi ∈ W,

which implies that W is also T∗-invariant.

Exercise 4. Let T be a normal operator on a finite-dimensional inner product
space V. Prove that N(T) = N(T∗) and R(T) = R(T∗).

Solution. Let v ∈ N(T), then T(v) = 0, which implies that v is an eigenvector of T
corresponding to eigenvalue 0, therefore v is also an eigenvector of T∗ corresponding
to 0. This proves that N(T) ⊂ N(T∗). Similarly, we also have N(T∗) ⊂ N(T) which
implies that N(T) = N(T∗).

Let w ∈ R(T), then there exists vw ∈ V such that w = T(vw), therefore for
v ∈ N(T), we have

⟨w, v⟩ = ⟨vw,T∗(v)⟩,
since N(T) = N(T∗), then

⟨w, v⟩ = 0,

which implies that w ∈ N(T)⊥. Since R(T∗) = N(T)⊥, then we have R(T) ⊂ R(T∗).
Similarly, we also have R(T∗) ⊂ R(T) which implies that R(T) = R(T∗).

Exercise 5. Let T be a normal operator on a finite-dimensional real inner product
space V whose characteristic polynomial splits. Prove that V has an orthonormal
basis of eigenvectors of T. Hence prove that T is self-adjoint.

Solution. It suffices to prove that V has an orthonormal basis of eigenvectors of
T. Denote n := dimV. Since the characteristic polynomial of V splits, then by
Schur’s theorem, there exists an orthonormal basis β = {v1, ..., vn} for V such that
[T]β = U is upper triangular. Let us use induction on n ∈ N to prove β is also the
set of eigenvectors of T.

For n = 1, we clearly have that v1 is an eigenvector of T.
Suppose there exists k ∈ N such that for all real inner product space V with 1 ≤

n ≤ k−1, β is the set of eigenvectors of T . Consider n = k, since span{v1, ..., vk−1}
is an inner product space with dimension k − 1, by the induction hypothesis, we
have v1, ..., vk−1 are eigenvectors of T. By Schur’s theorem, we have

T(vj) = Ujjvj ,

for 1 ≤ j ≤ k − 1. Then
T∗(vj) = Ūjjvj ,

for 1 ≤ j ≤ k − 1. Moreover, we have

T(vk) =
k∑

j=1

Ujkvj ,

then
Ujk = ⟨T(vk), vj⟩ = ⟨vk, Ūjjvj⟩ = 0,



SUGGESTED SOLUTIONS TO HOMEWORK 11 3

for 1 ≤ j ≤ k − 1, therefore
T(vk) = Ukkvk,

which implies that vk is also an eigenvectors of T. This proves that β is the set of
eigenvectors of T.

Exercise 6. Let V be a finite-dimensional real inner product space, and let U and
T be self-adjoint linear operators on V such that UT = TU. Prove that there exists
an orthonormal basis for V consisting of vectors that are eigenvectors of both U
and T.

Solution. Let us use induction on the dimension n ∈ N of V.
For n = 1, the conclusion is clearly true.
Suppose the conclusion is true for 1 ≤ n ≤ k − 1 for some k ∈ N. Consider

n = k. Let Eλ be an eigenspace of T with eigenvalue λ. Then Eλ is T-invariant
and U-invariant. Indeed, it is clear that Eλ is T-invariant, in addition, for v ∈ Eλ,
we have

TU(v) = UT(v) = λU(v),

which implies that U(v) ∈ Eλ. If Eλ = V, then since U are self-adjoint operator,
there exists an orthonormal basis β for V consisting eigenvectors of U. Moreover,
by the choice of V, it is clear that β is also a set of eigenvectos of T. This proves β
is an orthonormal basis for Vconsisting of eigenvectors of U and T. Otherwise, for
Eλ ⫋ V, then by the induction hypothesis, there exists an orthonormal basis β′ for
Eλconsisting of eigenvectors of UIEλ

and TIEλ
, where IEλ

is the projection from V to
Eλ. Moreover, let us consider (Eλ)

⊥, we claim that (Eλ)
⊥ is also T-invariant and

U-invariant. Indeed, it is clear that (Eλ)
⊥ is T-invariant, in addition, for w ∈ (Eλ)

⊥

and v ∈ Eλ, since Eλ is U-invariant, we have

⟨U(w), v⟩ = ⟨w,U(v)⟩ = 0,

which implies that U(v) ∈ (Eλ)
⊥. Then by the induction hypothesis, there ex-

ists an orthonormal basis β′′ for (Eλ)
⊥ consisting of eigenvectors of U(I− IEλ

) and
T(I− IEλ

). Therefore let β := β′ ∪ β′′, we have β is an orthonormal basis for V
consisting of eigenvectors of U and T.

2. section 6.5

Q1. Label the following statements as true or false. Assume that the underlying inner
product spaces are finite-dimensional.
(a) Every unitary operator is normal.
(b) Every orthogonal operator is diagonalizable.
(c) A matrix is unitary if and only if it is invertible.
(d) If two matrices are unitarily equivalent, then they are also similar.
(e) The sum of unitary matrices is unitary.
(f) The adjoint of a unitary operator is unitary.
(g) If T is an orthogonal operator on V , then [T ]β is an orthogonal matrix for any

ordered basis β for V .
(h) If all the eigenvalues of a linear operator are 1, then the operator must be

unitary or orthogonal.
(i) A linear operator may preserve the norm, but not the inner product.

Sol: (a) True.
(b) False.
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(c) False.
(d) True.
(e) False.
(f) Ture.
(g) False.
(h) False.
(i) False.

Q2(c). For the following matrix A, find an orthogonal or unitary matrix P and a diagonal
matrix D such that P ∗AP = D.(

2 3− 3i
3 + 3i 5

)
Sol. The characteristic polynomial of A is

(2− t)(5− t)− (3− 3i)(3 + 3i) = t2 − 7t− 8 = (t− 8)(t+ 1).

Hence, −1, 8 are all the eigenvalues of A. Note that for any scalars a, b,

3

(
−2 1− i
1 + i −1

)(
a
b

)
=

(
−6 3− 3i

3 + 3i −3

)(
a
b

)
= (A− 8I)

(
a
b

)
= 0⃗

if and only if b = (1 + i)a. In particular, u = (1, 1 + i) is an eigenvector of A
corresponding to eigenvalue 8.

∥u∥ =

√
11 + (1 + i)(1 + i) =

√
3.

On the other hand, for any scalars a, b,

3

(
1 1− i

1 + i 2

)(
a
b

)
=

(
3 3− 3i

3 + 3i 6

)(
a
b

)
= (A+ I)

(
a
b

)
= 0⃗

if and only if a = (i − 1)b. In particular, v = (i − 1, 1) is an eigenvector of A
corresponding to eigenvalue −1.

∥v∥ =

√
(i− 1)(i− 1) + 11 =

√
3.

Then

P =
1√
3

(
1 i− 1

i+ 1 1

)
is a unitary matrix and

D =

(
8 0
0 −1

)
is a diagonal matrix such that P ∗AP = D.

Q7. Prove if T is a unitary operator on a finite-dimensional inner product space V , then
T has a unitary square root.

Sol. Let β be the standard ordered basis and A = [T ]β . By Theorem 6.19 we have a
unitary matrix Q and a diagonal matrix D s.t.

A = Q∗DQ.
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Since A is unitary, we have A∗A = Q∗D∗QQ∗DQ = Q∗D∗DQ = I which implies
D∗D = I. By the fact that D is diagonal, denote

D =

|d1|eiθ1 · · · 0
...

. . .
...

0 · · · |dn|eiθn .



Then we have |dj | = 1. Let U = Q∗


√
|d1|e

iθ1
2 · · · 0

...
. . .

...
0 · · ·

√
|dn|e

iθn
2

Q. We can

varify U satiesfies our requirements.
Q10. Let A be an n× n real symmetric or complex normal matrix. Prove

tr(A) =

n∑
i=1

λi tr(A∗A) =

n∑
i=1

|λi|2,

where the λi’s are the eigenvalues of A.
Sol. There are unitary matrix Q and diagonal matrix D s.t. A = Q∗DQ and the

diagonal elements of D are eigenvalues of A. Then we have

tr(A) = tr(Q∗DQ) = tr(Q∗QD) = tr(D) =

n∑
i=1

λi.

tr(A∗A) = tr(Q∗D∗QQ∗DQ) = tr(D∗D) = tr(H) =

n∑
i=1

|λi|2.

Q12. Let A be an n× n real symmetric or complex normal matrix. Prove that

det(A) =

n∏
i=1

λi,

where the λi’s are the (not necessarily distinct) eigenvalues of A.
Sol. There are unitary matrix Q and diagonal matrix D s.t. A = Q∗DQ and the

diagonal elements of D are eigenvalues {λi}ni=1 of A. Then

det(A) = det(Q∗DQ) = det(D) =

n∏
i=1

λi.

Q15. Let U be a unitary operator on an inner product space V , and let W be a finite-
dimensional U -invariant subspace of V . Prove that
(a) U(W ) = W ; [(b)] W⊥ is U -invariant.

Sol. (a) Since U is W -invariant, we have U(W ) ⊆ W . It then suffices to show that
W ⊆ U(W ).
Consider UW : W → W , the restriction of U on W . Then UW is linear. As U is
unitary, ∥U(v)∥ = ∥v∥ for all v ∈ V . In particular, ∥UW (w)∥ = ∥U(w)∥ = ∥w∥
for all w ∈. So UW is one-to-one. As W is finite dimensional, UW is then onto,
and so W ⊆ UW (W ) = U(W ).
Hence we have U(W ) = W .

(b) Let v ∈ W⊥. Then ⟨v, w⟩ = 0 for all w ∈ W . Let w ∈ W . By the previous
question there exists w′ ∈ W = U(W ) such that w = Uw′. Then ⟨Uv,w⟩ =
⟨v, U∗Uw′⟩ = ⟨v, w′⟩ = 0. As w′ ∈ W is arbitrary, Uv ∈ W⊥.
As v ∈ W⊥ is arbitrary, W⊥ is U -invariant.


