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Solution to Homework 10

Compulsory Part

Sec.

Q2(c).

Sol.

Q6.

Sol.

Q13.

Sol.

6.2

In each part, apply the Gram—Schmidt process to the given subset S of the inner product
space V' to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis
to obtain an orthonormal basis 5 for span(S), and compute the Fourier coefficients of the
given vector relative to 5. Finally, use Theorem 6.5 to verify your result.
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Let V' be an inner product space, and let W be a finite-dimensional subspace of V. If x ¢ W,
prove that there exists y € V such that y € W+, but (x,y) # 0. Hint: Use Theorem 6.6.

The basis is
The coeflicients are

By Theorem 6.6, there exists w € W and y € W+ such that © = w+y. Sincex ¢ W, y # 0.
Then we have

(,y) = (w+y,y) = (w,y) + (y,y) = [|yl|* > 0.

Let V' be an inner product space, S and Sy be subsets of V', and W be a finite-dimensional
subspace of V. Prove the following results.

(a) So C S implies that S+ C Sy

(b) S C (S*)*; so span(S) C (SH)*.

(c) W = (W)L, Hint: Use Exercise 6.

(d) V=W @ W+=. (See the exercises of Section 1.3.)

(a) If v € St, then (v,s) =0 for all s € S. In particular (v,s) = 0 for all s € Sy. Therefore
v E Sy

(b) Let v € S. For all u € S+, (u,v) = 0. Hence (v,u) = (u,v) = 0 and v € (S+)*. Since
(S+)+ is a subspace of V' containing S, span(S) C (S+)+.

(c) By part (b), W c (W)L, If z € W, by Q6., there exists y € W+ such that (z,y) # 0.
Therefore = & (W+)+.

(d) By Theorem 6.6, we have V = W +W+. Also, from its proof, we have W NW+ = {ﬁ}
Therefore V=W @ W+.



Q3(c).

Sol.

Q12.

Sol.

Q13.

Sol.

Sec. 6.3

For each of the following inner product spaces V and linear operators 7" on V, evaluate T
at the given vector in V.

V = Pi(R) with (f,g) = / F()g(t)dt, T(f) = '+ 3f. f(t) = 4—2t.

Let 8 = {1,t} be the standard basis of V. Write T%(4 — 2t) = a + bt for some a,b € R. Then
for any g(t) = ¢+ dt € V with ¢,d € R, we have T'(g(t)) = d 4+ 3¢ + 3dt and

(d+3c+3dt, 4 — 2t) = (T(g(t), 4 — 2t) = (g(t), T*(4 — 2t)) = (c + dt,a + bt) .

Now (d+ 3c+3dt,4—2t) = 2(4)(d + 3¢) + (3d)(—2)2 = 4d + 24c and (c+dt,a+bt) =
2ac + %bd. Since c¢,d are arbitrary, the coefficients of them on both sides of the equation
must equal respectively. Therefore 24 = 2a and %b = 4. Hence a = 12 and b = 6. So
T*(4 — 2t) = 12 + 6t.

Let V be an inner product space, and let T' be a linear operator on V. Prove the following
results.

(a) R(T*)*™ = N(T).

(b) If V is finite-dimensional, then R(T*) = N(T)*. Hint: Use Exercise 13(c) of Section 6.2.

(a) Let z € R(T*)*. Then we have

0= (2, 7(T(x))) = (T(2), T(x)) = || T(x)|]*.

Hence T'(x) = 0 andz € N(T).
Conversely, suppose x € N(T'). For all z € R(T™), there exists y € V such that z = T*(y).
Hence

(z,2) = (&, T"(y)) = (T'(x),y) = 0
and z € R(T*)*.

(b) If V is finite dimensional, by Q13(c) of Sec. 6.2, N(T)* = (R(T*)*)* = R(T™).
Let T be a linear operator on a finite-dimensional inner product space V. Prove the following
results.

(a) N(T*T) = N(T). Deduce that rank(T*T) = rank(T).

(b) rank(T") = rank(7™). Deduce from (a) that rank(77T*) = rank(7").

(c) For any n x n matrix A. rank(A*A) = rank(AA*) = rank(A).

(a) Tt is clear that N(T') € N(T%T). Let x € N(T*T'). Then (T'(z),T(x)) = (z,T*T(z)) =
(x, 0) = 0. Hence T(x) = 0 and = € N(T). It follows that

rank(7*T) = n — nullity(T*7T) = n — nullity(T") = rank(7T)

where n = dim(V).



Ql4.

Sol.

Ql.

Sol.

(b) By Q12(b), R(T*) = N(T)*. Since V = N(T) @ N(T)* by Sec 6.2 Q13(d), we have
n = nullity(7") + dim(N(7)*) and

rank(7*) = dim(N(T)1) = n — nullity () = rank(7T).

(c) Note that L% = Ly-. Hence by applying part (a) and (b) with 7" = L4, we have
rank(A*A) = rank(La+L4) = rank(L* L) = rank(L 4) = rank(A). Similarly, rank(AA*) =
rank(A).

Let V' be an inner product space, and let y,z € V. Define T : V — V by T(x) = (z,y) z
for all x € V. First prove that T is linear. Then show that T™ exists, and find an explicit
expression for it.

For all z,w € V', we have

(T(@),w) = ((@,y) 2, w) = (2,9) (z0) = (2,5 w)y) = (@ w,2)y).

Note that w — (w, z) y is a linear operator on V since
(w1 + cwa, z) y = (w1, 2) + ¢ (wa, 2))y = (w1, 2) y + c (w2, 2) y

for all w1, wy € V and scalar ¢. Therefore this gives the adjoint of 7.

Optional Part

Sec. 6.2
Label the following statements as true or false.

(a) The Gram-Schmidt orthogonalization process allows us to construct an orthonormal set
from an arbitrary set of vectors.

(b) Every nonzero finite-dimensional inner product space has an orthonormal basis.
(¢) The orthogonal complement of any set is a subspace.

(d) If {v1,va,...,v,} is a basis for an inner product space V', then for any « € V the scalars
(x,v;) are the Fourier coefficients of z.

(e) An orthonormal basis must be an ordered basis.
(f) Every orthogonal set is linearly independent.

(g) Every orthonormal set is linearly independent.

(a) False. Consider {ﬁ}
(b) True.
) True.
(d) False. The notion of Fourier coefficients is only defined for orthonormal basis.
(e) True. This is by definition.
(f) False. Consider {ﬁ}



Q4.
Sol.

Q10.

Sol.

Ql4.

Sol.

(g) True.
Let S = {(1,0,4),(1,2,1)} in C3. Compute S*.

S+ ={(a,b,c) € C3: {((a,b,c),(1,0,4)) = a—ic=0 and ((a,b,c),(1,2,1)) =a+2b+c=0}.
Therefore we would like to solve

for (a,b,c) € C3. By computation

10 —i 10 —i
12 1 01 )

Therefore the null space is spanned by —% and
1
1
St = span({(i, —— -, 1}).

Let W be a finite-dimensional subspace of an inner product space V. Prove that there exists a
projection T on W along W+ that satisfies N(T') = W+. In addition, prove that | T(z)| < ||z||
for all x € V. Hint: Use Theorem 6.6 and Exercise 10 of Section 6.1. (Projections are defined
in the exercises of Section 2.1.)

By Theorem 6.6, for any = € V, we get unique u € W, z € W+, s.t.
r=u-+z.

So we can define the map
T:V W, z— u.

By the definition of projection and the uniqueness of u and z, T is a projection. Then, by
u | z and Exercise 10 of Section 6.1, we get

1T (@) = llull < V/llull® +[I2[1* =[]

Let W and Wy be subspaces of a finite-dimensional inner product space. Prove that (W; +
Wo)t = Wit n Wit and (W N Wa)+ = Wit + Wit (See the definition of the sum of subsets
of a vector space on page 22.) Hint for the second equation: Apply Exercise 13(c) to the first
equation.

Since Wy, Wy C Wy + Wa, by Q13(a), (W + W)t is contained in Wf- and VVQl Therefore
(W, —l—VVQ)L C VVlL ﬂW2L.

On the other hand, if x € I/Vll N WQL, for all w € Wy + Ws, there exists w1 € Wy, wo € W,
such that w = wy + wsy. Since (x,w1) = (x,wy) = 0, we have (x,w) = (x,w1) + (z,ws) = 0.
Therefore x € (W7 + W)+ and hence (W7 + Wa)t = Wit N Wit

By applying this with W; and W replaced by Wi and WQJ- respectively, and applying Q13(c),
we have (Wi + W3-+ = (WiH)+ N (Ws-)+ = Wi N W,. By taking orthogonal complement on
both sides and applying Q13(c) again, we have (W3 NW)t = (Wit + WiH)4H)+ = Wit + Wit
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Q17.

Sol.

Q18.

Sol.

Let T be a linear operator on an inner product space V. If (T'(z),y) = 0 for all z,y € V,
prove that T = Ty. In fact, prove this result if the equality holds for all  and y in some basis
for V.

For all z € V, T(x) € V and thus ||T(2)||> = (T(z),T(x)) = 0 by taking y = T(x). Hence
T(x)= 0 for all z € V and T = Tj the zero transformation.

Now we suppose (T'(x),y) = 0 for all z and y in some basis 5 for V. We want to prove that
this implies (T'(2'),y’) = 0 for all 2/ and ¢ in V.

Since ( is a basis, there exists x1,...,Tm € 5, ¥1,...,Yn € B, and scalars a1, ..., am,b1,...,b,

such that
m n
o Zaixi and 3y = ijyj.
i=1 j=1

Then we have

7~
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Let V.= C([—1,1]). Suppose that W, and W, denote the subspaces of V' consisting of the
even and odd functions, respectively. (See Exercise 22 of Section 1.3.) Prove that Wt = W,,
where the inner product on V' is defined by

1
- / (gt

Let f € W,. For any g € W, h(t) := f(t)g(t) for all t € [—1,1] is an odd function since
h(=t) = f(=t)g(—t) = = f(t)g(t) = —h(t). Therefore

1
= d =
9= [ st
Hence W, C Wi-.

Note that V =W, @& W,. In fact, let h € V. Define

1 1
he(t) == i(h(t) + h(—t)) and hy(t) := §(h<t) — h(—t)) vt € [-1,1].
Then h, € W, h, € W,, and h = he + h,. Hence V. = W, + W,. Moreover, if h € W, N W,,
then h(t) = h(—t) = —h(t) for all ¢t € [-1,1]. Therefore 2h(t) = 0 and h(t) = 0 for all
€[-1,1]. SoW.nW, ={0}.



Let f € Wt Since V =W, @ W,, write f = f. + f, with f. € W, and f, € W,. Then

0 = <fa fe> = <f0+f67f6> = <f07f6> + <f€7f€> = HfEHQ‘

Therefore f. = 0 and f = f, € W,. So we have the opposition inclusion and Wz = W,,.

Sec. 6.3

Q1. Label the following statements as true or false. Assume that the underlying inner product
spaces are finite-dimensional.

(a) Every linear operator has an adjoint.

(b) Every linear operator on V has the form z — (z,y) for some y € V.

(c) For every linear operator T' on V and every ordered basis § for V, we have [T*]|3 =
([Tp)".

(d) The adjoint of a linear operator is unique.

(e) For any linear operators 7" and U and scalars a and b,

(aT +bU)* = aT™ +bU".

(f) For any n x n matrix A, we have (La)* = L.

(g) For any linear operator T', we have (T7%)* =T.

Sol. (a) True. (Remark: Here the finiteness of dimension of the underlying inner product space
is essential.)

False. If V # R, then the codomain of any linear operator on V cannot be R.
False.

True.

False. Over complex inner product space, (ily)* = —ily # ily.

True.

True.

Q9. Prove that if V. = W @ W+ and T is the projection on W along W+, then T = T*. Hint:
Recall that N(T)) = W+. (For definitions, see the exercises of Sections 1.3 and 2.1.)

Sol. From the assumption V. = W @ W+, for all v,w € V, there exist unique v, w; € W and
V9, Wy € W+ such that v = v1 + v9 and w = wy + we. We check that

(T'(v),w) = (v1, w1 + wa) = (v1,w1) + (v1, wa) = (v1,w1)

and so

(v, T(w)) = (T(w),v) = (w1,v1) = (v1,w1) = (T'(v),w) .
Therefore T™ exists and T = T™.

Q10. Let T be a linear operator on an inner product space V. Prove that ||T'(x)|| = ||z|| for all
x € V if and only if (T'(z),T(y)) = (z,y) for all z,y € V. Hint: Use Exercise 20 of Section
6.1.



Sol.

Q11.

Sol.

Q19.
Sol.

(<) Suppose (T'(z),T(y)) = (x,y) for all x,y € V. Then ||T(2)|| = /(T(z),T(x)) =
VA{z,x) = ||z|| for all x € V.

(=) Suppose ||T(x)|| = ||z|| for all z € V. Then ||T(z)||?> = ||z||? for all z € V. If V is a real
inner product space, by Exercise 20 of Section 6.1, we have

(T(2), ) = {]IT() + TP ~ {I1T() ~ T = T+ )|~ {7 — )
{wan?—lu P = (o5)

If V is a complex inner product space, by Exercise 20 of Section 6.1, we have
=
<T(w)7T(y)>=ZZHT($)+i’“T P = ZIIT z+ity)||? = ZIIHZ yll? = (z,y).
k=1

For a linear operator T on an inner product space V. Prove that T*T = Ty implies T = Tj.
Is the same result true if we assume that T7T* = Ty?

Suppose T*T = Ty. Let x € V. Note that
1T()|[* = (T (), T()) = (x,T*T(x)) = (x, 0) = 0.

Hence T'(x) = 0 and thus T = Tp.

Suppose now TT* = Ty. Since T exists, (T%)* exists and equals to T. So by previous
argument, 7 = Ty. The adjoint of the zero operator is still zero since (Tp(x),y) = (x, To(y))
for all z,y € V. Therefore T' = (T*)* =T = To.

Prove A*A is diagonal iff. every pair of colums of A is orthogonal.

Assume A = (B1,- -, Bn) where 8; € My, «1. Then

sr

We can see A*A is diagonal iff. Eﬂj = 0 for all ¢ # j iff. every pair of colums of A is
orthogonal.



