THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2040 Solution to Homework 10

Compulsory Part

Sec. 6.2

- Q2(c). In each part, apply the Gram–Schmidt process to the given subset S of the inner product space V to obtain an orthogonal basis for span(S). Then normalize the vectors in this basis to obtain an orthonormal basis β for span(S), and compute the Fourier coefficients of the given vector relative to β . Finally, use Theorem 6.5 to verify your result.
 - Sol. The basis is

$$\left\{1, 2\sqrt{3}\left(x - \frac{1}{2}\right), \frac{1}{180}\left(x^2 - x + \frac{1}{6}\right)\right\}.$$

The coefficients are $\frac{3}{2}$, $\frac{1}{2\sqrt{3}}$, 0.

- Q6. Let V be an inner product space, and let W be a finite-dimensional subspace of V. If $x \notin W$, prove that there exists $y \in V$ such that $y \in W^{\perp}$, but $\langle x, y \rangle \neq 0$. Hint: Use Theorem 6.6.
- Sol. By Theorem 6.6, there exists $w \in W$ and $y \in W^{\perp}$ such that x = w + y. Since $x \notin W, y \neq \overrightarrow{0}$. Then we have

$$\langle x, y \rangle = \langle w + y, y \rangle = \langle w, y \rangle + \langle y, y \rangle = ||y||^2 > 0.$$

- Q13. Let V be an inner product space, S and S_0 be subsets of V, and W be a finite-dimensional subspace of V. Prove the following results.
 - (a) $S_0 \subseteq S$ implies that $S^{\perp} \subseteq S_0^{\perp}$.
 - (b) $S \subseteq (S^{\perp})^{\perp}$; so span $(S) \subseteq (S^{\perp})^{\perp}$.
 - (c) $W = (W^{\perp})^{\perp}$. Hint: Use Exercise 6.
 - (d) $V = W \oplus W^{\perp}$. (See the exercises of Section 1.3.)
- Sol. (a) If $v \in S^{\perp}$, then $\langle v, s \rangle = 0$ for all $s \in S$. In particular $\langle v, s \rangle = 0$ for all $s \in S_0$. Therefore $v \in S_0^{\perp}$.
 - (b) Let $v \in S$. For all $u \in S^{\perp}$, $\langle u, v \rangle = 0$. Hence $\langle v, u \rangle = \overline{\langle u, v \rangle} = 0$ and $v \in (S^{\perp})^{\perp}$. Since $(S^{\perp})^{\perp}$ is a subspace of V containing S, $\operatorname{span}(S) \subseteq (S^{\perp})^{\perp}$.
 - (c) By part (b), $W \subset (W^{\perp})^{\perp}$. If $x \notin W$, by Q6., there exists $y \in W^{\perp}$ such that $\langle x, y \rangle \neq 0$. Therefore $x \notin (W^{\perp})^{\perp}$.
 - (d) By Theorem 6.6, we have $V = W + W^{\perp}$. Also, from its proof, we have $W \cap W^{\perp} = \{\overrightarrow{0}\}$. Therefore $V = W \oplus W^{\perp}$.

Sec. 6.3

Q3(c). For each of the following inner product spaces V and linear operators T on V, evaluate T^* at the given vector in V.

$$V = P_1(\mathbb{R})$$
 with $\langle f, g \rangle = \int_{-1}^{1} f(t)g(t)dt$, $T(f) = f' + 3f$. $f(t) = 4 - 2t$.

Sol. Let $\beta = \{1, t\}$ be the standard basis of V. Write $T^*(4 - 2t) = a + bt$ for some $a, b \in \mathbb{R}$. Then for any $g(t) = c + dt \in V$ with $c, d \in \mathbb{R}$, we have T(g(t)) = d + 3c + 3dt and

 $\langle d+3c+3dt, 4-2t\rangle = \langle T(g(t), 4-2t\rangle = \langle g(t), T^*(4-2t)\rangle = \langle c+dt, a+bt\rangle.$

Now $\langle d + 3c + 3dt, 4 - 2t \rangle = 2(4)(d + 3c) + (3d)(-2)\frac{2}{3} = 4d + 24c$ and $\langle c + dt, a + bt \rangle = 2ac + \frac{2}{3}bd$. Since c, d are arbitrary, the coefficients of them on both sides of the equation must equal respectively. Therefore 24 = 2a and $\frac{2}{3}b = 4$. Hence a = 12 and b = 6. So $T^*(4-2t) = 12 + 6t$.

- Q12. Let V be an inner product space, and let T be a linear operator on V. Prove the following results.
 - (a) $\mathsf{R}(T^*)^{\perp} = \mathsf{N}(T).$
 - (b) If V is finite-dimensional, then $\mathsf{R}(T^*) = \mathsf{N}(T)^{\perp}$. Hint: Use Exercise 13(c) of Section 6.2.
- Sol. (a) Let $x \in \mathsf{R}(T^*)^{\perp}$. Then we have

$$0 = \langle x, T^*(T(x)) \rangle = \langle T(x), T(x) \rangle = ||T(x)||^2.$$

Hence $T(x) = \overrightarrow{0}$ and $x \in N(T)$.

Conversely, suppose $x \in N(T)$. For all $z \in R(T^*)$, there exists $y \in V$ such that $z = T^*(y)$. Hence

$$\langle x, z \rangle = \langle x, T^*(y) \rangle = \langle T(x), y \rangle = 0$$

and $x \in \mathsf{R}(T^*)^{\perp}$.

- (b) If V is finite dimensional, by Q13(c) of Sec. 6.2, $N(T)^{\perp} = (R(T^*)^{\perp})^{\perp} = R(T^*)$.
- Q13. Let T be a linear operator on a finite-dimensional inner product space V. Prove the following results.
 - (a) $N(T^*T) = N(T)$. Deduce that $rank(T^*T) = rank(T)$.
 - (b) $\operatorname{rank}(T) = \operatorname{rank}(T^*)$. Deduce from (a) that $\operatorname{rank}(TT^*) = \operatorname{rank}(T)$.
 - (c) For any $n \times n$ matrix A. rank $(A^*A) = \operatorname{rank}(AA^*) = \operatorname{rank}(A)$.
- Sol. (a) It is clear that $\mathsf{N}(T) \subset \mathsf{N}(T^*T)$. Let $x \in \mathsf{N}(T^*T)$. Then $\langle T(x), T(x) \rangle = \langle x, T^*T(x) \rangle = \langle x, \overline{0} \rangle = 0$. Hence $T(x) = \overline{0}$ and $x \in \mathsf{N}(T)$. It follows that

$$\operatorname{rank}(T^*T) = n - \operatorname{nullity}(T^*T) = n - \operatorname{nullity}(T) = \operatorname{rank}(T)$$

where $n = \dim(V)$.

(b) By Q12(b), $\mathsf{R}(T^*) = \mathsf{N}(T)^{\perp}$. Since $V = \mathsf{N}(T) \oplus \mathsf{N}(T)^{\perp}$ by Sec 6.2 Q13(d), we have $n = \operatorname{nullity}(T) + \dim(\mathsf{N}(T)^{\perp})$ and

 $\operatorname{rank}(T^*) = \operatorname{dim}(\mathsf{N}(T)^{\perp}) = n - \operatorname{nullity}(T) = \operatorname{rank}(T).$

- (c) Note that $L_A^* = L_{A^*}$. Hence by applying part (a) and (b) with $T = L_A$, we have $\operatorname{rank}(A^*A) = \operatorname{rank}(L_{A^*}L_A) = \operatorname{rank}(L_A^*L_A) = \operatorname{rank}(L_A) = \operatorname{rank}(A)$. Similarly, $\operatorname{rank}(AA^*) = \operatorname{rank}(A)$.
- Q14. Let V be an inner product space, and let $y, z \in V$. Define $T : V \to V$ by $T(x) = \langle x, y \rangle z$ for all $x \in V$. First prove that T is linear. Then show that T^* exists, and find an explicit expression for it.
- Sol. For all $x, w \in V$, we have

$$\langle T(x), w \rangle = \langle \langle x, y \rangle \, z, w \rangle = \langle x, y \rangle \, \langle z, w \rangle = \left\langle x, \overline{\langle z, w \rangle} y \right\rangle = \langle x, \langle w, z \rangle \, y \rangle \, .$$

Note that $w \mapsto \langle w, z \rangle y$ is a linear operator on V since

 $\langle w_1 + cw_2, z \rangle y = (\langle w_1, z \rangle + c \langle w_2, z \rangle) y = \langle w_1, z \rangle y + c \langle w_2, z \rangle y$

for all $w_1, w_2 \in V$ and scalar c. Therefore this gives the adjoint of T.

Optional Part

Sec. 6.2

- Q1. Label the following statements as true or false.
 - (a) The Gram-Schmidt orthogonalization process allows us to construct an orthonormal set from an arbitrary set of vectors.
 - (b) Every nonzero finite-dimensional inner product space has an orthonormal basis.
 - (c) The orthogonal complement of any set is a subspace.
 - (d) If $\{v_1, v_2, \ldots, v_n\}$ is a basis for an inner product space V, then for any $x \in V$ the scalars $\langle x, v_i \rangle$ are the Fourier coefficients of x.
 - (e) An orthonormal basis must be an ordered basis.
 - (f) Every orthogonal set is linearly independent.
 - (g) Every orthonormal set is linearly independent.
- Sol. (a) False. Consider $\{\overrightarrow{0}\}$.
 - (b) True.
 - (c) True.
 - (d) False. The notion of Fourier coefficients is only defined for orthonormal basis.
 - (e) True. This is by definition.
 - (f) False. Consider $\{\overrightarrow{0}\}$.

(g) True.

- Q4. Let $S = \{(1,0,i), (1,2,1)\}$ in \mathbb{C}^3 . Compute S^{\perp} .
- Sol. $S^{\perp} = \{(a, b, c) \in \mathbb{C}^3 : \langle (a, b, c), (1, 0, i) \rangle = a ic = 0 \text{ and } \langle (a, b, c), (1, 2, 1) \rangle = a + 2b + c = 0 \}$. Therefore we would like to solve

$$\begin{pmatrix} 1 & 0 & -i \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

for $(a, b, c) \in \mathbb{C}^3$. By computation

$$\begin{pmatrix} 1 & 0 & -i \\ 1 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -i \\ 0 & 1 & \frac{1+i}{2} \end{pmatrix}.$$

Therefore the null space is spanned by $\begin{pmatrix} i \\ -\frac{1+i}{2} \\ 1 \end{pmatrix}$ and
 $S^{\perp} = \operatorname{span}(\{(i, -\frac{1+i}{2}, 1\}).$

- Q10. Let W be a finite-dimensional subspace of an inner product space V. Prove that there exists a projection T on W along W^{\perp} that satisfies $N(T) = W^{\perp}$. In addition, prove that $||T(x)|| \leq ||x||$ for all $x \in V$. Hint: Use Theorem 6.6 and Exercise 10 of Section 6.1. (Projections are defined in the exercises of Section 2.1.)
- Sol. By Theorem 6.6, for any $x \in V$, we get unique $u \in W, z \in W^{\perp}$, s.t.

$$x = u + z$$

So we can define the map

$$T: V \to W, x \mapsto u.$$

By the definition of projection and the uniqueness of u and z, T is a projection. Then, by $u \perp z$ and Exercise 10 of Section 6.1, we get

$$||T(x)|| = ||u|| \le \sqrt{||u||^2 + ||z||^2} = ||x||.$$

- Q14. Let W_1 and W_2 be subspaces of a finite-dimensional inner product space. Prove that $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$ and $(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$. (See the definition of the sum of subsets of a vector space on page 22.) Hint for the second equation: Apply Exercise 13(c) to the first equation.
- Sol. Since $W_1, W_2 \subset W_1 + W_2$, by Q13(a), $(W_1 + W_2)^{\perp}$ is contained in W_1^{\perp} and W_2^{\perp} . Therefore $(W_1 + W_2)^{\perp} \subset W_1^{\perp} \cap W_2^{\perp}$.

On the other hand, if $x \in W_1^{\perp} \cap W_2^{\perp}$, for all $w \in W_1 + W_2$, there exists $w_1 \in W_1$, $w_2 \in W_2$, such that $w = w_1 + w_2$. Since $\langle x, w_1 \rangle = \langle x, w_2 \rangle = 0$, we have $\langle x, w \rangle = \langle x, w_1 \rangle + \langle x, w_2 \rangle = 0$. Therefore $x \in (W_1 + W_2)^{\perp}$ and hence $(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$.

By applying this with W_1 and W_2 replaced by W_1^{\perp} and W_2^{\perp} respectively, and applying Q13(c), we have $(W_1^{\perp} + W_2^{\perp})^{\perp} = (W_1^{\perp})^{\perp} \cap (W_2^{\perp})^{\perp} = W_1 \cap W_2$. By taking orthogonal complement on both sides and applying Q13(c) again, we have $(W_1 \cap W_2)^{\perp} = (W_1^{\perp} + W_2^{\perp})^{\perp})^{\perp} = W_1^{\perp} + W_2^{\perp}$.

- Q17. Let T be a linear operator on an inner product space V. If $\langle T(x), y \rangle = 0$ for all $x, y \in V$, prove that $T = T_0$. In fact, prove this result if the equality holds for all x and y in some basis for V.
- Sol. For all $x \in V$, $T(x) \in V$ and thus $||T(x)||^2 = \langle T(x), T(x) \rangle = 0$ by taking y = T(x). Hence $T(x) = \overrightarrow{0}$ for all $x \in V$ and $T = T_0$ the zero transformation.

Now we suppose $\langle T(x), y \rangle = 0$ for all x and y in some basis β for V. We want to prove that this implies $\langle T(x'), y' \rangle = 0$ for all x' and y' in V.

Since β is a basis, there exists $x_1, \ldots, x_m \in \beta, y_1, \ldots, y_n \in \beta$, and scalars $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that

$$x' = \sum_{i=1}^{m} a_i x_i$$
 and $y' = \sum_{j=1}^{n} b_j y_j$.

Then we have

$$\left\langle T(x'), y' \right\rangle$$

= $\left\langle T\left(\sum_{i=1}^{m} a_i x_i\right), \sum_{j=1}^{n} b_j y_j \right\rangle$
= $\left\langle \sum_{i=1}^{m} a_i T(x_i), \sum_{j=1}^{n} b_j y_j \right\rangle$
= $\sum_{i=1}^{m} \sum_{j=1}^{n} a_i \overline{b_j} \left\langle T(x_i), y_j \right\rangle$
= 0.

Q18. Let $V = \mathsf{C}([-1, 1])$. Suppose that W_e and W_o denote the subspaces of V consisting of the even and odd functions, respectively. (See Exercise 22 of Section 1.3.) Prove that $W_e^{\perp} = W_o$, where the inner product on V is defined by

$$\langle f,g \rangle = \int_{-1}^{1} f(t)g(t)dt.$$

Sol. Let $f \in W_o$. For any $g \in W_e$, h(t) := f(t)g(t) for all $t \in [-1, 1]$ is an odd function since h(-t) = f(-t)g(-t) = -f(t)g(t) = -h(t). Therefore

$$\langle f,g\rangle = \int_{-1}^{1} f(t)g(t)dt = 0.$$

Hence $W_o \subset W_e^{\perp}$.

Note that $V = W_e \oplus W_o$. In fact, let $h \in V$. Define

$$h_e(t) := \frac{1}{2}(h(t) + h(-t)) \text{ and } h_o(t) := \frac{1}{2}(h(t) - h(-t)) \ \forall t \in [-1, 1].$$

Then $h_e \in W_e$, $h_o \in W_o$, and $h = h_e + h_o$. Hence $V = W_e + W_o$. Moreover, if $h \in W_e \cap W_o$, then h(t) = h(-t) = -h(t) for all $t \in [-1, 1]$. Therefore 2h(t) = 0 and h(t) = 0 for all $t \in [-1, 1]$. So $W_e \cap W_o = \{\overrightarrow{0}\}$. Let $f \in W_e^{\perp}$. Since $V = W_e \oplus W_o$, write $f = f_e + f_o$ with $f_e \in W_e$ and $f_o \in W_o$. Then

$$0 = \langle f, f_e \rangle = \langle f_o + f_e, f_e \rangle = \langle f_o, f_e \rangle + \langle f_e, f_e \rangle = ||f_e||^2.$$

Therefore $f_e = 0$ and $f = f_o \in W_o$. So we have the opposition inclusion and $W_e^{\perp} = W_o$.

Sec. 6.3

- Q1. Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
 - (a) Every linear operator has an adjoint.
 - (b) Every linear operator on V has the form $x \to \langle x, y \rangle$ for some $y \in V$.
 - (c) For every linear operator T on V and every ordered basis β for V, we have $[T^*]_{\beta} = ([T]_{\beta})^*$.
 - (d) The adjoint of a linear operator is unique.
 - (e) For any linear operators T and U and scalars a and b,

$$(aT + bU)^* = aT^* + bU^*.$$

- (f) For any $n \times n$ matrix A, we have $(L_A)^* = L_{A^*}$.
- (g) For any linear operator T, we have $(T^*)^* = T$.
- Sol. (a) True. (Remark: Here the finiteness of dimension of the underlying inner product space is essential.)
 - (b) False. If $V \neq \mathbb{R}$, then the codomain of any linear operator on V cannot be \mathbb{R} .
 - (c) False.
 - (d) True.
 - (e) False. Over complex inner product space, $(iI_V)^* = -iI_V \neq iI_V$.
 - (f) True.
 - (g) True.
- Q9. Prove that if $V = W \oplus W^{\perp}$ and T is the projection on W along W^{\perp} , then $T = T^*$. Hint: Recall that $N(T) = W^{\perp}$. (For definitions, see the exercises of Sections 1.3 and 2.1.)
- Sol. From the assumption $V = W \oplus W^{\perp}$, for all $v, w \in V$, there exist unique $v_1, w_1 \in W$ and $v_2, w_2 \in W^{\perp}$ such that $v = v_1 + v_2$ and $w = w_1 + w_2$. We check that

$$\langle T(v), w \rangle = \langle v_1, w_1 + w_2 \rangle = \langle v_1, w_1 \rangle + \langle v_1, w_2 \rangle = \langle v_1, w_1 \rangle$$

and so

$$\langle v, T(w) \rangle = \overline{\langle T(w), v \rangle} = \overline{\langle w_1, v_1 \rangle} = \langle v_1, w_1 \rangle = \langle T(v), w \rangle$$

Therefore T^* exists and $T = T^*$.

Q10. Let T be a linear operator on an inner product space V. Prove that ||T(x)|| = ||x|| for all $x \in V$ if and only if $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$. Hint: Use Exercise 20 of Section 6.1.

Sol. (\Leftarrow) Suppose $\langle T(x), T(y) \rangle = \langle x, y \rangle$ for all $x, y \in V$. Then $||T(x)|| = \sqrt{\langle T(x), T(x) \rangle} = \sqrt{\langle x, x \rangle} = ||x||$ for all $x \in V$. (\Rightarrow) Suppose ||T(x)|| = ||x|| for all $x \in V$. Then $||T(x)||^2 = ||x||^2$ for all $x \in V$. If V is a real inner product space, by Exercise 20 of Section 6.1, we have

$$\begin{split} \langle T(x), T(y) \rangle &= \frac{1}{4} ||T(x) + T(y)||^2 - \frac{1}{4} ||T(x) - T(y)||^2 = \frac{1}{4} ||T(x+y)||^2 - \frac{1}{4} ||T(x-y)||^2 \\ &= \frac{1}{4} ||x+y||^2 - \frac{1}{4} ||x-y||^2 = \langle x, y \rangle \,. \end{split}$$

If V is a complex inner product space, by Exercise 20 of Section 6.1, we have

$$\langle T(x), T(y) \rangle = \frac{1}{4} \sum_{k=1}^{4} ||T(x) + i^k T(y)||^2 = \frac{1}{4} \sum_{k=1}^{4} ||T(x + i^k y)||^2 = \frac{1}{4} \sum_{k=1}^{4} ||x + i^k y||^2 = \langle x, y \rangle.$$

- Q11. For a linear operator T on an inner product space V. Prove that $T^*T = T_0$ implies $T = T_0$. Is the same result true if we assume that $TT^* = T_0$?
- Sol. Suppose $T^*T = T_0$. Let $x \in V$. Note that

$$||T(x)||^{2} = \langle T(x), T(x) \rangle = \langle x, T^{*}T(x) \rangle = \langle x, \overrightarrow{0} \rangle = 0.$$

Hence $T(x) = \overrightarrow{0}$ and thus $T = T_0$.

Suppose now $TT^* = T_0$. Since T^* exists, $(T^*)^*$ exists and equals to T. So by previous argument, $T^* = T_0$. The adjoint of the zero operator is still zero since $\langle T_0(x), y \rangle = \langle x, T_0(y) \rangle$ for all $x, y \in V$. Therefore $T = (T^*)^* = T_0^* = T_0$.

- Q19. Prove A^*A is diagonal iff. every pair of colums of A is orthogonal.
- Sol. Assume $A = (\beta_1, \dots, \beta_n)$ where $\beta_i \in M_{m \times 1}$. Then

$$A^*A = \overline{A^T}A = \begin{pmatrix} \overline{\beta_1^T} \\ \vdots \\ \overline{\beta_n^T} \end{pmatrix} (\beta_1, \cdots, \beta_n).$$

We can see A^*A is diagonal iff. $\overline{\beta_i^T}\beta_j = 0$ for all $i \neq j$ iff. every pair of columns of A is orthogonal.