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Suggested Solution to Problem Set 3

Notations: Throughout this problem set, we use R to denote a rectangle in Rn. When we write

R = A×B, then we mean A ⊂ Rm and B ⊂ Rk are rectangles with n = m+ k.

Problems to hand in

1. Prove that if A ⊂ Rn is compact and has measure zero , then A has content zero .

Solution. ∀ε > 0 , there exist a sequence of open rectangles R1, R2, · · · , such that

A ⊂
∞⋃
n=1

Rn

and
∞∑
n=1

V ol(Rn) < ε.

then because A is compact , we can find finite many of such Rn such that

A ⊂
m⋃

n=1

R′
n

an at the same time
∑

V ol(R′
n) < ε then A is content zero .

2. Define the volume of a subset Ω ⊂ Rn by V ol(Ω) =
∫
Ω 1dV .

(a) Let A ⊂ Rn be a content zero subset. Prove that A must be bounded. Moreover, show that

∂A has measure zero and Vol(A) = 0.

(b) Let B ⊂ Rn be a bounded subset of measure zero. Suppose ∂B has measure zero. Prove

that Vol(B) = 0.

Solution. (a) A is bounded because it can be covered by a finite collection of closed bounded

rectangles.

Ā has content zero since Ā is the smallest closed set containing A and a finite union of closed

sets is closed. So ∂A ⊂ Ā has content zero, hence measure zero.

A finite collection of rectangles {Ri}ki=1 covering A will induce a partition P of a rectangle

R ⊃ A such that U(χA,P) ≤
∑k

i=1Vol(Ri), which can be made arbitrarily small.

(b) As B̄ = B ∪ ∂B, B̄ also has measure zero. B̄ is closed and bounded (since B is bounded),

hence compact. So, by suggested exercise 3(c), B̄ has content zero, and so does B. So

Vol(B) = 0 by (a).

3. Evaluate the following integrals:

(a)
∫
R

x
x2+y

dV where R = [0, 1]× [1, 3]



(b)
∫ 1
0

∫ x
x2

x
1+y2

dydx

(c)
∫ 1
0

∫ 1√
y e

y/x dxdy

Solution. (a) consider [(x2 + 3) ln (x2 + 3)]′ = 2x ln (x2 + 3) + 2x∫
R

x

x2 + y
dV =

∫ 1

0

∫ 3

1

x

x2 + y
dydx =

∫ 1

0
x(ln (x2 + 3)− ln (x2 + 1))dx

=
1

2
(12 + 3)(ln 12 + 3)− 1

2
(02 + 3) ln (02 + 3)− 1

2
(12 + 1) ln (12 + 1) +

1

2
(02 + 1) ln (02 + 1)

=
1

2
(6 ln 2− 3 ln 3).

(b) ∫ 1

0

∫ x

x2

x

1 + y2
dydx =

∫ 1

0

∫ √
y

y

x

1 + y2
dxdy =

∫ 1

0

y − y2

1 + y2
dy =

∫ 1

0

1

2 + 2y2
d(y2)−

∫ 1

0
(1− 1

1 + y2
)dy

=
1

2
(
1

2
ln 2− 1 +

π

4
).

(c) ∫ 1

0

∫ 1

√
y
ey/x dxdy =

∫ 1

0

∫ x2

0
ey/x dydx =

∫ 1

0
x(ex−e0)dx = −1

2
+[(x−1)ex]x=1−[(x−1)ex]x=0 =

1

2
.

4. Let Ω ⊂ R3 be the portion of the cube [0, 1]× [0, 1]× [0, 1] lying above the plane y + z = 1 and

below the plane x+ y + z = 2. Evaluate the integral
∫
Ω x dV .

Solution. ∫
Ω
x dV =

∫ 1

0

∫ 1

0

∫ 2−x−y

1−y
xdzdydx−

∫ 1

0

∫ 1−x

0

∫ 2−y−x

1
xdzdydx

=

∫ 1

0

∫ 1

0
x(1− x)dydx+

∫ 1

0

∫ 1−x

0
x(1− y − x)dydx =

1

6
− 1

24
=

1

8
.

5. Let f : R = [0, 1]× [0, 1] → R be the function defined by

f(x, y) =

{
1 if y ∈ Q,

2x if y ̸∈ Q.

(a) Prove that f is NOT integrable on R.

(b) Show that each iterated integral
∫ 1
0

∫ 1
0 f(x, y) dxdy and

∫ 1
0

∫ 1

0f(x, y) dydx exist and compute

their values.



Solution. (a) We want to show that f violates the integrability condition in challenging exercise

1 of Problem Set 1.

Let Pn := {Cn
i,j := [ i−1

n , i
n ] × [ j−1

n , j
n ] : 1 ≤ i, j ≤ n} be a partition of R. Clearly,

maxi,j diam(Cn
i,j) → 0 as n → ∞. However, note that

U(f,P2n) =
1

2
+

2n∑
j=1

2n∑
i=n+1

2 · i

2n
(
1

2n
)2

=
1

2
+ 2(2n)

(n+ 1 + 2n)n

2
(
1

2n
)3

=
1

2
+

3n+ 1

4n
,

and

L(f,P2n) =

2n∑
j=1

n∑
i=1

2 · i− 1

2n
(
1

2n
)2 +

1

2

= 2(2n)
(n− 1)n

2
(
1

2n
)3 +

1

2

=
n− 1

4n
+

1

2
.

Now, f is not integrable on R because

U(f,P2n)− L(f,P2n) →
1

2
̸= 0.

(b) If y ∈ Q, then f( · , y) = 1 is integrable on [0, 1] and∫ 1

0
f(x, y) dx =

∫ 1

0
1 dx = 1.

If y ̸∈ Q, then f( · , y) = 2x is integrable on [0, 1] and∫ 1

0
f(x, y) dx =

∫ 1

0
2x dx = 1.

Hence y 7→
∫ 1
0 f(x, y) dx = 1 is integrable on [0, 1] and

∫ 1

0

∫ 1

0
f(x, y) dxdy =

∫ 1

0
1 dy = 1.

By the density of Q and R\Q, it is easy to see that∫ 1

0
f(x, y) dy =

{
1 if 0 ≤ x < 1

2

2x if 1
2 ≤ x ≤ 1,

which is integrable over [0, 1]. Hence
∫ 1
0

∫ 1

0f(x, y) dydx exists and∫ 1

0

∫ 1

0
f(x, y) dydx =

∫ 1
2

0
dx+

∫ 1

1
2

2x dx =
5

4
.



Suggested Exercises

1. (a) Show that the subset Rn−1 × {0} ⊂ Rn has measure zero.

(b) Show that Qc ∩ [0, 1] does not have measure zero in R.

Solution. (a) The set can be covered by the union of rectangles

Ri = [−2i, 2i]× · · · × [−2i, 2i]× [−ε/2(i+1)n, ε/2(i+1)n], i ∈ N,

whose total volume is
∞∑
i=1

Vol(Ri) =
∞∑
i=1

(2 · 2i)n−1 · 2ε

2(i+1)n
=

∞∑
i=1

ε
2i

= ε.

(b) If Qc ∩ [0, 1] has measure zero, then [0, 1] = (Q ∩ [0, 1]) ∪ (Qc ∩ [0, 1]) also has measure zero

as Q ∩ [0, 1] has measure zero, hence volume zero, which is not true.

2. Let f : Ω → R be a bounded continuous function defined on a bounded subset Ω ⊂ Rn whose

boundary ∂Ω has measure zero. Suppose Ω is path-connected, i.e. for any p, q ∈ Ω, there exists a

continuous path γ(t) : [0, 1] → Ω such that γ(0) = p and γ(1) = q. Prove that there exists some

x0 ∈ Ω such that ∫
Ω
f dV = f(x0)Vol(Ω).

Solution. Without loss of generality, we assume that f is non-constant and Vol(Ω) ̸= 0. Then

there exists u ∈ Ω such that

m := inf
x∈Ω

f(x) < f(u) < inf
x∈Ω

f(x) =: M.

Let ε > 0 be very small. By continuity, there is δ > 0 such that

m+ ε < f(x) < M − ε for all x ∈ Bδ(u) ∩ Ω.

By considering

∫
Ω
f dV =

∫
Ω\Bδ(u)

f dV +

∫
Bδ(u)

f dV , we have

mVol(Ω\Bδ(u)) + (m+ ε)Vol(Bδ(u)) ≤
∫
Ω
f dV ≤ MVol(Ω\Bδ(u)) + (M − ε)Vol(Bδ(u))

mVol(Ω) + εVol(Bδ(u)) ≤
∫
Ω
f dV ≤ MVol(Ω)− εVol(Bδ(u)),

and thus

m+Kε ≤ 1

Vol(Ω)

∫
Ω
f dV ≤ M −Kε

where K = Vol(Bδ(u))
Vol(Ω) > 0.

By the definition of supremum and infimum, there exist p1, p2 ∈ Ω such that f(p) > M −Kε and

f(q) < m+Kε. Therefore,

f(q) <
1

Vol(Ω))

∫
Ω
f dV < f(p).

We want to apply the intermediate value theorem in 1-dimensional case. Since Ω is path-

connected, there is a continuous path γ : [0, 1] → Ω such that γ(0) = p and γ(1) = q. Now

f ◦ γ : [0, 1] → R is a continuous function with (f ◦ γ)(0) = f(p) and (f ◦ γ)(1) = f(q). By

intermediate value theorem, there exists t0 ∈ [0, 1] such that (f ◦ γ)(t0) = 1
Vol(Ω)

∫
Ω f dV . Finally,

x0 := γ(t0) ∈ Ω satisfies the desired property.



3. Find the volume of the region in R3 bounded by the cylinders x2 + y2 = 1 and x2 + z2 = 1.

Solution. Consider the part x, y, z ≥ 0 , when x = h ,we have y2, z2 ≤ 1− h2 , 1 so

Volume of the region =

∫ 1

−1

∫ √
1−x2

−
√
1−x2

∫ √
1−x2

−
√
1−x2

1 dydzdx = 4

∫ 1

−1
(1− x2)dx =

16

3
.

4. Find the volume of the region in R3 bounded below by the xy-plane, above by z = y, and on the

sides by y = 4− x2.

Solution. Let f(x, y) = y, Ω = {(x, y) : 0 ≤ y ≤ 4− x2}. Then

Volume of the region =

∫
Ω
f dV

=

∫ 2

−2

∫ 4−x2

0
y dydx

=

∫ 2

−2

1

2
(4− x2)2 dx

=
256

15
.

5. Let f : Ω → R be a C2 function 2 on an open subset Ω ⊂ R2. Use Fubini’s Theorem to prove

that ∂2f
∂x∂y = ∂2f

∂y∂x everywhere in Ω.

Solution. Applying Fubini’s Theorem and the fundamental theorem of calculus, one can show

that ∫
R′

∂2f

∂x∂y
dV =

∫
R′

∂2f

∂y∂x
dV,

and hence ∫
R′

(
∂2f

∂x∂y
− ∂2f

∂y∂x

)
dV = 0,

for any subretcangle R′ ⊂ Ω. The continuity of ∂2f
∂x∂y − ∂2f

∂y∂x then implies that ∂2f
∂x∂y − ∂2f

∂y∂x = 0

on Ω.

6. Let f : R = [a, b]× [c, d] → R be a continuous function. Define another function F : R → R such

that

F (x, y) :=

∫
[a,x]×[c,y]

f dV.

Compute ∂F
∂x and ∂F

∂y in the interior of R.

1Know more interesting story about this , you can google Steinmetz solid .
2Recall that a function f is Ck if all the partial derivatives up to order k exist and are continuous.



Solution. By Fubini’s Theorem and the fundamental theorem of calculus,

∂F

∂x
(x, y) =

∂

∂x

∫ x

a

(∫ y

c
f dy

)
dx =

∫ y

c
f(x, y) dy,

∂F

∂y
(x, y) =

∂

∂x

∫ y

c

(∫ x

a
f dx

)
dy =

∫ x

a
f(x, y) dx.

7. Let f : R = [a, b]× [c, d] → R be a continuous function such that ∂f
∂y is continuous on R. Define

G : [c, d] → R such that

G(y) :=

∫ b

a
f(x, y) dx.

(a) Show that G is continuous on [c, d].

(b) Prove that G is differentiable on (c, d) and G′(y) =
∫ b
a

∂f
∂y (x, y) dx.

Solution. (a) For y, y0 ∈ [c, d],

|G(y)−G(y0)| =
∣∣∣∣∫ b

a
f(x, y) dx−

∫ b

a
f(x, y0) dx

∣∣∣∣
=

∣∣∣∣∫ b

a
(f(x, y)− f(x, y0)) dx

∣∣∣∣
≤
∫ b

a
|f(x, y)− f(x, y0)| dx.

Let ε > 0. Since f is continuous on the compact set R, it is uniformly continuous on R.

Then there exists δ > 0 such that

|f(x, y)− f(u, v)| < ε

b− a
whenever ∥(x, y)− (u, v)∥ < δ.

Now, if |y − y0| < δ, then ∥(x, y)− (x, y0)∥ < δ, so that

|G(y)−G(y0)| ≤
∫ b

a

ε

b− a
dx = ε.

Therefore G is uniformly continuous, hence continuous on [c, d].

(b) For y ∈ (c, d) and h small,∣∣∣∣G(y + h)−G(y)

h
−
∫ b

a

∂f

∂y
(x, y) dx

∣∣∣∣ ≤ ∫ b

a

∣∣∣∣f(x, y + h)− f(x, y)

h
− ∂f

∂y
(x, y)

∣∣∣∣ dx.
By Mean Value Theorem, there exists ξ between y and y + h such that

f(x, y + h)− f(x, y)

h
=

∂f

∂y
(x, ξ)

Let ε > 0. From the uniform continuity of ∂f
∂y on R, there exists δ > 0 such that∣∣∣∣∂f∂y (x, y)− ∂f

∂y
(u, v)

∣∣∣∣ < ε

b− a
whenever ∥(x, y)− (u, v)∥ < δ.



Now, if 0 < |h| < δ, we have ∥(x, ξ)− (x, y)∥ ≤ |h| < δ, and so∣∣∣∣G(y + h)−G(y)

h
−
∫ b

a

∂f

∂y
(x, y) dx

∣∣∣∣ ≤ ∫ b

a

∣∣∣∣∂f∂y (x, ξ)− ∂f

∂y
(x, y)

∣∣∣∣ dx
≤
∫ b

a

ε

b− a
dx = ε.

Therefore, G is differentiable on (c, d) and G′(y) =
∫ b
a

∂f
∂y (x, y) dx.

Challenging Exercises

1. The following exercise establishes the theorem that a bounded function f : R → R is integrable

if and only if f is continuous on R except on a set of measure zero. Let f : R → R be a bounded

function. For each p ∈ R and δ > 0, we define the oscillation of f at p as

o(f, p) = lim
δ→0+

(
sup

x∈Bδ(p)∩R
f(x)− inf

x∈Bδ(p)∩R
f(x)

)
.

(a) Show that o(f, p) is well-defined and non-negative. Prove that f is continuous at p if and

only if o(f, p) = 0.

(b) For any ϵ > 0, let Dϵ := {p ∈ R : o(f, p) ≥ ϵ}. Show that Dϵ is a closed subset and the set

of discontinuities D of f is given as D = ∪∞
n=1D1/n.

(c) Suppose f is integrable on R. Prove that D1/n has content zero for any n ∈ N. Hence, show
that D has measure zero.

(d) Suppose D has measure zero, prove that f is integrable on R.

Solution. (a) o(f, p) is well-defined and non-negative because o(f, p, δ) := sup
x∈Bδ(p)∩R

f(x) −

inf
x∈Bδ(p)∩R

f(x) ≥ 0 decreases as δ → 0+.

Suppose f is continuous at p. Let ε > 0. Then there exists δ > 0 such that |f(x)−f(p)| < ε/2

whenever x ∈ Bδ(p). Thus |f(x) − f(y)| < ε whenever x, y ∈ Bδ(p), so that o(f, p) ≤
sup

x∈Bδ(p)∩R
f(x)− inf

x∈Bδ(p)∩R
f(x) ≤ ε. Therefore, o(f, p) = 0.

The converse is clear since

|f(x)− f(y)| ≤ sup
x∈Bδ(p)∩R

f(x)− inf
x∈Bδ(p)∩R

f(x) for x, y ∈ Bδ(p).

(b) R\Dε is open because

p ∈ R\Dε =⇒ ∃δ > 0 s.t. o(f, p, δ) < ε

=⇒ ∀y ∈ Bδ/2(p), o(f, y, δ/2) ≤ o(f, p, δ) < ε

=⇒ ∀y ∈ Bδ/2(p), o(f, y) < ε

=⇒ Bδ/2(p) ⊂ R\Dε.

By (a), D = {p ∈ R : o(f, p) > 0} =
⋃∞

n=1{p ∈ R : o(f, p) ≥ 1/n} =
⋃∞

n=1D1/n.



(c) Let ε, η > 0. Choose a partition P such that U(f,P)− L(f,P) < η. Then

ε
∑
Q∈P

Q∩Dε ̸=∅

Vol(Q) ≤
∑
Q∈P

Q∩Dε ̸=∅

[sup
x∈Q

f(x)− inf
y∈Q

f(y)]Vol(Q) ≤ U(f,P)− L(f,P) < η

Since {Q ∈ P : Q ∩Dε ̸= ∅} covers Dε, Dε has content zero, hence measure zero.

So D =
⋃∞

n=1D1/n also has measure zero.

(d) Let ε, η > 0. Dε has measure zero, hence content zero. So we can find a partition P = {Qi}
such that

∑
Qi∩Dε ̸=∅

Vol(Qi) < η. For any x ∈ A :=
⋃

Qi∩Dε=∅
Qi, we have o(f, x) < ε and thus

there exists δx > 0 such that f(p) − f(q) < ε for p, q ∈ Bδx(x). By the compactness of A,

A ⊂ Bδx1/2
(x1) ∪ · · · ∪Bδxm/2(xm). By refining P if necessary, we have

sup
x∈Qi

f(x)− inf
x∈Qi

f(x) ≤ ε if Qi ∩Dε = ∅.

Now U(f,P)− L(f,P) ≤ (η + ε)Vol(R). Therefore f is integrable on R.


