MATH 2028 Honours Advanced Calculus 11
2024-25 Term 1
Suggested Solution to Problem Set 3

Notations: Throughout this problem set, we use R to denote a rectangle in R”. When we write
R = A x B, then we mean A C R™ and B C R* are rectangles with n = m + k.

Problems to hand in

1. Prove that if A C R™ is compact and has measure zero , then A has content zero .

Solution. Ve > 0 , there exist a sequence of open rectangles Ry, Ro,--- , such that
o
AcC U R,
n=1
and
[o.¢]
Z Vol(R,) < e.
n=1

then because A is compact , we can find finite many of such R,, such that
m
Ac|Jr,
n=1
an at the same time > Vol(R]) < e then A is content zero . O

2. Define the volume of a subset & C R" by Vol(Q) = [, 1dV .

(a) Let A C R™ be a content zero subset. Prove that A must be bounded. Moreover, show that
0A has measure zero and Vol(A4) = 0.

(b) Let B C R™ be a bounded subset of measure zero. Suppose 0B has measure zero. Prove
that Vol(B) = 0.

Solution. (a) A is bounded because it can be covered by a finite collection of closed bounded
rectangles.

A has content zero since A is the smallest closed set containing A and a finite union of closed
sets is closed. So JA C A has content zero, hence measure zero.

A finite collection of rectangles {Ri}le covering A will induce a partition P of a rectangle
R D A such that U(xa,P) < 3% Vol(R;), which can be made arbitrarily small.

(b) As B = BU OB, B also has measure zero. B is closed and bounded (since B is bounded),
hence compact. So, by suggested exercise 3(c), B has content zero, and so does B. So
Vol(B) = 0 by (a).

O

3. Evaluate the following integrals:

(a) Jp 75y dV where R = [0,1] x [1, 3]



(0) fy [ v dyda
(c) Jo [ e/ dady

Solution. (a) consider [(#? + 3)In (22 + 3)] = 2z 1n (2% + 3) + 22

/ ° aﬂ/—/l/3 LA d:v—/lx(ln($2—i—3)—ln(w2—|—1))dac
rRT*+yY o J1 ¥ty Y 0

1 1 1 1
= 5(12 +3)(In1% +3) — 5(02 +3)In (0% + 3) — 5(12 +1)In(12+1)+ 5(02 +1)In (0% +1)

1
= 5(61112—31113).

1 1 vy 1, .2 1 1 1
/ / l“Qdydx:/ / v 2d$dy:/ y y2dy:/ 2al(gﬁ)—/ (1
0 Ja2 14y 0o Jy 14y o 1+y 0 2+2 0 1+y

4. Let Q C R? be the portion of the cube [0, 1] x [0,1] x [0, 1] lying above the plane y + z = 1 and
below the plane z 4+ y 4 z = 2. Evaluate the integral [,z dV.

Solution.

1 1 2—x—y 1 l—z p2—y—z
/x dv —/ / / rdzdydx —/ / / xdzdydz
Q 0 Jo Ji—y o Jo 1

1 1 1 pl—z 1 1 1
= 1 — 2)dyd l—y—2)dyde = - — — = —.
/0 /0 x( x) yx—l—/o /0 x( y — x)dydx £33

5. Let f: R=10,1] x [0,1] — R be the function defined by
B 1 ifyeqQ,
f(@y) = { 2z ify ¢ Q.

(a) Prove that f is NOT integrable on R.

—1
b) Show that each iterated integral Ll x,y) drdy and ! x,y) dydz exist and compute
0 Jo 0Jo
their values.

)dy



Solution. (a) We want to show that f violates the integrability condition in challenging exercise
1 of Problem Set 1.

Let P, = {C’Z}j = [%,%] X [%,%] : 1 < 4,5 < n} be a partition of R. Clearly,
max; j diam(Cy’;) — 0 as n — oo. However, note that
1 2n  2n i 1
1 KR
j=1i=n+1
n+1+4+2n)n, 1 4
= - 42(2n) =R (=
B 1 3n+1
2 4n "’
and
I i1, 1 1
L = 2. S s o
(RS 3) SRR LI
7j=11i=1
m—Dn,1 .4 1
=2(2 L
(2n) 2 (2n) 2
~n—1 1
 4n 2

Now, f is not integrable on R because
1
U(f, Pan) — L(f, Pon) — B # 0.
(b) If y € Q, then f(-,y) =1 is integrable on [0, 1] and

/Olf(:r,y)d:r:/olldle.

If y ¢ Q, then f(-,y) = 2z is integrable on [0, 1] and

/Olf(x,y)dw—/olm:dx—l.

Hence y fol f(z,y) dz =1 is integrable on [0, 1] and

/Ol/olf(x,y)dxdyzfolldyzl.

By the density of Q and R\Q, it is easy to see that

—1 . 1
1 fo<z<s
/Of(x,y) dy:{ 2

20 ifi<z<l,

S 171 .
which is integrable over [0,1]. Hence [y [, f(x,y) dydz exists and

171 1 1 5
/ /f(m,y) dydx:/ dac—l—/ 2¢ do = —.
0 0 0 1 4



Suggested Exercises

1.

2.

(a) Show that the subset R*~! x {0} ¢ R" has measure zero.

(b) Show that Q° N [0, 1] does not have measure zero in R.

Solution. (a) The set can be covered by the union of rectangles

Ry =[=2%,2 x -+ x [-2,27] x [e/zz+1 ,e/20T0M, i eN,

whose total volume is Y Vol(R;) = > (2-2/)" 1. z+1)n Z 5 =
i=1 i=1 i=
(b) If Q°N[0,1] has measure zero, then [0,1] = (Q N[0, 1]) U (Q°N [ ,1]) also has measure zero

as QN [0, 1] has measure zero, hence volume zero, which is not true.

O]

Let f: 2 — R be a bounded continuous function defined on a bounded subset 2 C R™ whose
boundary 0f) has measure zero. Suppose ) is path-connected, i.e. for any p, q € ), there exists a
continuous path () : [0, 1] — € such that v(0) = p and (1) = ¢q. Prove that there exists some
ro € Q such that

/Q £ dV = f(z0)Vol(Q).

Solution. Without loss of generality, we assume that f is non-constant and Vol(€2) # 0. Then
there exists u € () such that

m = inf f(z) < f(u) < inf f(z) = M.

Let € > 0 be very small. By continuity, there is § > 0 such that
m+e< f(r) <M —e forall z € Bs(u)NQ.

By considering / fdv = / fdv + / fdV, we have
Q \Bjs(u) Bs(u)

Q
mVol(\Bs(u)) + (m + £)Vol(Bs(u / FaV < MVol(Q\Bj(u)) + (M — &)Vol(Bs(u))
mVol(Q2) + eVol(Bs(u / fdV < MVol(2) — eVol(Bs(u)),
and thus

m+ Ke <

<M-K
_Vol /de €

where K = %(5())) > 0.

By the definition of supremum and infimum, there exist p1,p2 € Q such that f(p) > M — Ke and

f(q) < m+ Ke. Therefore,
1
fla) < Vol () /Qde < f(p).

We want to apply the intermediate value theorem in 1-dimensional case. Since 2 is path-

connected, there is a continuous path v : [0,1] — € such that y(0) = p and (1) = ¢q. Now
fox:][0,1] — R is a continuous function with (f o~v)(0) = f(p) and (f v)(1) = f(q). B

intermediate value theorem, there exists to € [0, 1] such that (fo~v)(to) = Vol fQ fdv. F1nally,
xo = y(tg) € Q satisfies the desired property. O



3. Find the volume of the region in R? bounded by the cylinders 22 + 32> = 1 and 22 + 2% = 1.

Solution. Consider the part z,y,z > 0, when z = h ,we have 32,22 <1—h%, ! so

1
1
Volume of the region = / / / 1 dydzdr = 4/ (1 —2%)dr = §6

-1

4. Find the volume of the region in R3 bounded below by the zy-plane, above by z =y, and on the
sides by y = 4 — z2.

Solution. Let f(z,y) =y, @ = {(x,9) : 0 <y < 4 —22}. Then

Volume of the region = / fav
Q

2 rd—az?
= / / y dydz
—2Jo

21
:/ —(4—2*? da
52
256
15 °
0

5. Let f: Q — R be a C? function 2 on an open subset Q C R%. Use Fubini’s Theorem to prove

2 2
that grafy = ;yaj; everywhere in (2.

Solution. Applying Fubini’s Theorem and the fundamental theorem of calculus, one can show

that
0% f B 0% f

r 0x0y r 0yOx

0? 0?
/ ( U ) av =0,
r \Ox0y  Oyox
for any subretcangle R’ C Q. The continuity of 82:281; a%afx then implies that %afy — % =
on €.

av,

and hence

O o

6. Let f: R =[a,b] X [¢c,d] = R be a continuous function. Define another function ' : R — R such

that
Faw)= [ fav
[a,2]x[c,y]

Compute and in the interior of R.

"Know more interesting story about this , you can google Steinmetz solid .
2Recall that a function f is C* if all the partial derivatives up to order k exist and are continuous.



Solution. By Fubini’s Theorem and the fundamental theorem of calculus,

i(%y):({i/j (/Cyfdy) d:c:/cyf(m,y) dy,
oan =g ([ rac)ay= [ st as

O]

7. Let f: R =a,b] X [¢,d] — R be a continuous function such that % is continuous on R. Define
G : [c,d] — R such that

b
G(y) = / f(z,y) da.

(a) Show that G is continuous on [c, d].
(b) Prove that G is differentiable on (c,d) and G'(y) = fb g—i(x,y) dx.

a

Solution. (a) For y,yo € [c,d],

G(y) = G(yo)| =

/a  flay) do - / ' flago) da
b

/ () — f(@,90)) da

a

b
< / (@) — f(z,90)] d.

Let € > 0. Since f is continuous on the compact set R, it is uniformly continuous on R.
Then there exists § > 0 such that

F(e.y) = flu0)| < 7= whenever ||(,y) — (u.v)] <

Now, if |y - y0| < 0, then ||($7y) - (I‘,yo)H < 5> so that

b &
G(y) — Glwo)| < / de=c

Therefore G is uniformly continuous, hence continuous on [c, d].

(b) For y € (¢,d) and h small,
h) — b b
Gly+h)—Gy) _/ 8f(x’y> de| < /
By Mean Value Theorem, there exists £ between y and y + h such that

h Ay
h Oy

h) —
ISR CONE T P

(z,€)

Let € > 0. From the uniform continuity of % on R, there exists § > 0 such that

of

Y )_g <
dy 'Y ay

(u,v)| < T

whenever ||(z,y) — (u,v)|| < 0.



Now, if 0 < |h| < 6, we have ||(z,£) — (z,y)|| < |h| <, and so
of

Gly+h) —Gly) [*of “lof
h _/a aiy($ay) dx S/a 7(3776)_ ay
§/bbfadx:€.

Ay
Therefore, G is differentiable on (¢, d) and G'(y) = f: g—i(x,y) dx.

(z,y)| dx

Challenging Exercises

1. The following exercise establishes the theorem that a bounded function f : R — R is integrable
if and only if f is continuous on R except on a set of measure zero. Let f : R — R be a bounded
function. For each p € R and § > 0, we define the oscillation of f at p as

o(f,p) = lim ( sup  f(x)—  inf f(x)) .

6—0% \ zeBs(p)NR z€Bs(p)NR

(a) Show that o(f,p) is well-defined and non-negative. Prove that f is continuous at p if and
only if o(f,p) = 0.

(b) For any € > 0, let D, := {p € R : o(f,p) > €}. Show that D, is a closed subset and the set
of discontinuities D of f is given as D = U321 D p,.

(c) Suppose f is integrable on R. Prove that D, has content zero for any n € N. Hence, show

that D has measure zero.

(d) Suppose D has measure zero, prove that f is integrable on R.

Solution. (a) o(f,p) is well-defined and non-negative because o(f,p,d) == sup f(x) —
z€Bs(p)NR

inf  f(z) > 0 decreases as § — 0F.
z€Bs(p)NR

Suppose f is continuous at p. Let € > 0. Then there exists § > 0 such that |f(z)—f(p)| < €/2
whenever © € Bs(p). Thus |f(z) — f(y)| < € whenever z,y € Bs(p), so that o(f,p) <

sup  f(z)— inf  f(z) <e. Therefore, o(f,p) = 0.
z€Bs(p)NR z€Bs(p)NR

The converse is clear since

Ifx) = f) < sup  f(z)— inf f(x) forz,y € Bs(p).
z€Bs(p)NR z€Bs(p)NR

(b) R\D: is open because

p€ R\D. = 30 >0s.t. o(f,p,0) <e
= Yy € Bs/a(p),o(f,y,6/2) < o(f,p,0) <e¢
= Vy € Bsz(p),o(f,y) <e
= Bs/s(p) C R\D:..

By (a), D={p€ R:o(f,p) >0} =U,_i{p € R:o(f,p) >1/n} =U,Z| Di/n-



()

Let ,7 > 0. Choose a partition P such that U(f,P) — L(f,P) <n. Then

e D Vo< ) [supf(a) - inf f()]Vol(Q) S U(f,P) = L(f,P) <n
QeP Qep *€Q Y
QND:#0D QND:#0
Since {Q € P : QN D, # (0} covers D., D, has content zero, hence measure zero.

So D = U,Z, Dy, also has measure zero.

Let e,7 > 0. D, has measure zero, hence content zero. So we can find a partition P = {Q;}

such that  >>  Vol(Q;) <n. Forany x € A:= |J @Q;, we have o(f,z) < € and thus
QiND:#0 QiND:=0
there exists 6, > 0 such that f(p) — f(q) < € for p,q € Bs,(z). By the compactness of A,

AC 3611/2(951) U---UBs, 2(¥m). By refining P if necessary, we have

sup f(xz) — inf f(z)<e ifQ;ND.=0.
TEQ; TEQ;

Now U(f,P) — L(f,P) < (n+ ¢)Vol(R). Therefore f is integrable on R.



