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Suggested Solution to Problem Set 4

Problems to hand in

1. Calculate the line integral
∫
C f ds and

∫
C F · dr where

(a) f(x, y, z) = y2 + z − 3xy, F(x, y, z) = (y2, z,−3xy) and C is the line segment from (1, 0, 1)

to (2, 3,−1).

(b) f(x, y) = x+ y, F(x, y) = (−y3, x3) and C is the square with vertices (0, 0), (1, 0), (1, 1) and

(0, 1) oriented counterclockwise.

Solution. (a) Solution

We are given:

f(x, y, z) = y2 + z − 3xy, F(x, y, z) = (y2, z,−3xy)

The curve C is the line segment from (1, 0, 1) to (2, 3,−1).

The line segment from (1, 0, 1) to (2, 3,−1) can be parametrized as:

r(t) = (1 + t, 3t, 1− 2t), 0 ≤ t ≤ 1

This gives:

x(t) = 1 + t, y(t) = 3t, z(t) = 1− 2t

The differential of the position vector is:

dr =
dr

dt
dt = (1, 3,−2)dt

The line integral of f ds is given by:∫
C
f ds =

∫ 1

0
f(r(t))

∣∣∣∣drdt
∣∣∣∣ dt

We compute the magnitude of dr
dt :∣∣∣∣drdt

∣∣∣∣ =√12 + 32 + (−2)2 =
√
1 + 9 + 4 =

√
14

Substitute f(x, y, z) = y2 + z − 3xy along the curve r(t):

f(r(t)) = (3t)2 + (1− 2t)− 3(1 + t)(3t)

f(r(t)) = 9t2 + 1− 2t− 9t(1 + t) = 9t2 + 1− 2t− 9t− 9t2

f(r(t)) = 1− 11t

Thus, the line integral becomes:∫
C
f ds =

√
14

∫ 1

0
(1− 11t)dt =

√
14

[
t− 11

2
t2
]1
0



=
√
14

(
1− 11

2

)
= −9

2

√
14

The line integral of F · dr is given by:∫
C
F · dr =

∫ 1

0
F(r(t)) · dr

dt
dt

Substituting F(x, y, z) = (y2, z,−3xy) along the curve r(t):

F(r(t)) = (9t2, 1− 2t,−9t(1 + t))

Now, compute the dot product:

F(r(t)) · (1, 3,−2) = 9t2(1) + (1− 2t)(3) + (−9t(1 + t))(−2)

= 9t2 + 3− 6t+ 18t+ 18t2 = 27t2 + 12t+ 3

Thus, the line integral becomes:∫
C
F · dr =

∫ 1

0
(27t2 + 12t+ 3)dt

=
[
9t3 + 6t2 + 3t

]1
0
= 9 + 6 + 3 = 18

(b) Solution

We are given:

f(x, y) = x+ y, F(x, y) = (−y3, x3)

The curve C is the square with vertices (0, 0), (1, 0), (1, 1), (0, 1), oriented counterclockwise.

The curve C consists of four line segments:

• From (0, 0) to (1, 0): r1(t) = (t, 0), 0 ≤ t ≤ 1

• From (1, 0) to (1, 1): r2(t) = (1, t), 0 ≤ t ≤ 1

• From (1, 1) to (0, 1): r3(t) = (1− t, 1), 0 ≤ t ≤ 1

• From (0, 1) to (0, 0): r4(t) = (0, 1− t), 0 ≤ t ≤ 1

The line integral
∫
C f ds is computed by summing the integrals over each segment of the square.

∫
C1

f ds =

∫ 1

0
t dt =

1

2

∫
C2

f ds =

∫ 1

0
(1 + t) dt =

3

2

∫
C3

f ds =

∫ 1

0
(2− t) dt =

3

2

∫
C4

f ds =

∫ 1

0
(1− t) dt =

1

2



Thus, the total line integral is: ∫
C
f ds =

1

2
+

3

2
+

3

2
+

1

2
= 4

in addition , by symmetry ,
∫
C f ds = 2

∫
C x ds .

The line integral
∫
C F ·dr is computed by summing the integrals over each segment of the square.

Along the first segment r1(t) = (t, 0): ∫
C1

F · dr = 0

Along the second segment r2(t) = (1, t): ∫
C2

F · dr = 1

Along the third segment r3(t) = (1− t, 1):∫
C3

F · dr = 1

Along the fourth segment r4(t) = (0, 1− t):∫
C4

F · dr = 0

Thus, the total line integral is: ∫
C
F · dr = 0 + 1 + 1 + 0 = 2

On the other hand , we can give a solution for (b) in use of stokes equation :

Solution. Integral like∫
C F · dr, where F(x, y) = (−y3, x3)

The curve C is a square with vertices (0, 0), (1, 0), (1, 1), (0, 1), oriented counterclockwise.

Stokes’ Theorem states: ∫
C
F · dr =

∫∫
S
(∇× F) · dS

Where:

• C is the boundary of surface S (the region enclosed by C in the xy-plane),

• ∇× F is the curl of F.



For F(x, y) = (−y3, x3), the curl in two dimensions is:

∇× F =
∂F2

∂x
− ∂F1

∂y

Where F1 = −y3 and F2 = x3. Thus:

∂F2

∂x
=

∂

∂x
(x3) = 3x2

∂F1

∂y
=

∂

∂y
(−y3) = −3y2

So the curl is:

∇× F = 3x2 + 3y2

The surface S is the unit square with vertices (0, 0), (1, 0), (1, 1), (0, 1). The area element dS is

dx dy, and the integral becomes: ∫∫
S
(3x2 + 3y2) dx dy

We split this into two integrals: ∫∫
S
3x2 dx dy +

∫∫
S
3y2 dx dy

∫∫
S
3x2 dx dy = 3

∫ 1

0

∫ 1

0
x2 dx dy

First, integrate with respect to x:∫ 1

0
x2 dx =

[
x3

3

]1
0

=
13

3
=

1

3

Thus: ∫∫
S
3x2 dx dy = 3 · 1

3
·
∫ 1

0
dy = 1

∫∫
S
3y2 dx dy = 3

∫ 1

0

∫ 1

0
y2 dx dy

First, integrate with respect to x: ∫ 1

0
dx = 1

Thus: ∫∫
S
3y2 dx dy = 3

∫ 1

0
y2 dy = 3

[
y3

3

]1
0

= 3 · 1
3

3
= 1

Combining both integrals: ∫
C
F · dr = 1 + 1 = 2

In addition , Green’s Theorem states:∫
C
P dx+Qdy =

∫∫
S

(
∂Q

∂x
− ∂P

∂y

)
dx dy



2. Let C be the curve of intersection of the upper hemisphere x2+y2+z2 = 4, z ≥ 0 and the cylinder

x2 + y2 = 2x, oriented counterclockwise as viewed from high above the xy-plane. Evaluate the

line integral
∫
C F · dr⃗ where F (x, y, z) = (y, z, x).

Solution. If (x, y, z) lies on the required curve, then (x− 1)2 + y2 = 1 and z =
√
4− 2x.

Thus, the curve C can be parametrized by

r⃗(t) = (1 + cos t, sin t,
√
2− 2 cos t)

= (1 + cos t, sin t, 2 sin(t/2)), t ∈ [0, 2π].

Hence, ∫
C
F · dr⃗ =

∫ 2π

0
(sin t, 2 sin(t/2), 1 + cos t) · (− sin t, cos t, cos(t/2)) dt

=

∫ 2π

0

(
− sin2 t+ 2 sin(t/2) cos t+ cos(t/2) + cos(t/2) cos t

)
dt

= −π − 8

3
+ 0 + 0

= −π − 8

3
.

3. Evaluate the line integral
∫
C F · dr⃗ where F : R2 \ {(0, 0)} → R2 is the vector field

F (x, y) =

(
x

x2 + y2
,

y

x2 + y2

)
and C is an arbitrary path from (1, 1) to (2, 2) not passing through the origin.

Solution. We first find a C1 function f : R\{(0, 0)} → R2 such that ∇f = F , i.e.
∂f

∂x
=

x

x2 + y2
,

∂f

∂y
=

y

x2 + y2
.

The first equation implies

f(x, y) =
1

2
log(x2 + y2) + g(y),

for some C1 function g. Substituting this into the second equation gives

g′(y) = 0 =⇒ g(y) = C, a constant.

Choose C = 0, we have

f(x, y) =
1

2
log(x2 + y2).

By the Fundamental Theorem of Calculus for line integrals, we have∫
C
F · dr⃗ = f(2, 2)− f(1, 1) = log 2.



4. Determine which of the following vector field F is conservative on Rn. For whose that are

conservative, find a potential function f for it. For those that are not conservative, find a closed

curve such that
∮
C F · dr⃗ ̸= 0.

(a) F (x, y) = (y2, x2);

(b) F (x, y, z) = (y2z, 2xyz + sin z, xy2 + y cos z).

Solution. (a) Since the compatibility condition is a necessary condition for conservative vector

field, we want to check that the compatibility condition is not satisfied by F . Indeed,

∂F1

∂y
= 2y

∂F2

∂x
= 2x ̸= 2y.

So F is not conservative.

Let C be a circle with parametrization r⃗(t) = (1 + cos t, sin t), t ∈ [0, 2π]. Then∮
C
F · dr⃗ =

∫ 2π

0
(sin2 t, cos2 t+ 2 cos t+ 1) · (− sin t, cos t) dt

=

∫ 2π

0

(
− sin3 t+ cos3 t+ 2 cos2 t+ cos t

)
dt

= 2

∫ 2π

0
cos2 t dt = 2π ̸= 0.

(b) Since R3 is simply connected, F is a conservative vector field if it satisfies the compatibility

condition. Indeed,

∂F1

∂y
= 2yz,

∂F2

∂x
= 2yz;

∂F2

∂z
= 2xy + cos z,

∂F3

∂y
= 2xy + cos z;

∂F3

∂x
= y2,

∂F1

∂z
= y2.

Next we compute the potential function f : R3 → R. Suppose

∂f

∂x
= y2z

∂f

∂y
= 2xyz + sin z

∂f

∂x
= xy2 + y cos z.

The first equation implies

f(x, y, z) = xy2z + g(y, z)

for some C1 function g. Substituting this into the second equation gives

∂g

∂y
= sin z =⇒ g(y, z) = y sin z + h(z).



Substituting this into the third equation gives

∂h

∂z
= 0 =⇒ h(z) = C, a constant.

Choose C = 0, we have

f(x, y, z) = xy2z + y sin z.

5. Find the area of the region enclosed by the curve x2/3 + y2/3 = 1.

Solution. Parametrize the curve C : x2/3 + y2/3 = 1 by

γ(t) = (cos3 t, sin3 t), 0 ≤ 0 ≤ 2π.

By Green’s Theorem,

Area =

∫
C
x dy

=

∫ 2π

0
cos3 t · 3 sin2 t cos t dt

= 3

∫ 2π

0
cos4 t sin2 t dt

=
3π

8
.

Suggested Exercises

1. Calculate the line integral
∫
C F · dr⃗ where

(a) F (x, y, z) = (z, x, y) and C is the line segment from (0, 1, 2) to (1,−1, 3).

(b) F (x, y, z) = (y, 0, 0) where C is the intersection of the unit sphere x2 + y2 + z2 = 1 and the

plane x+ y + z = 0, oriented counterclockwise as viewed from high above the xy-plane.

Solution. (a) Parametrization: γ(t) = (1− t)(0, 1, 2) + t(1,−1, 3), t ∈ [0, 1].

(b) Along the intersection,

x2 + y2 + (−x− y)2 = 2(x+
y

2
)2 +

3

2
y2 = 1.

So we may let 
√
2(x+ y

2 ) = cos t√
3
2y = sin t,

t ∈ [0, 2π].

A parametrization of C can then be obtained by solving x, y, z in terms of t.



2. Calculate
∫
C F · dr⃗ where F : R3 → R3 is the vector field

F (x, y, z) =
(
3x+ y2 + 2xz, 2xy + zeyz + y, x2 + yeyz + zez

2
)

and C is the parametrized curve γ : [0, 1] → R3 given by

γ(t) =
(
et

7 cos(2πt21), t17 + 4t3 − 1, t4 + (t− t2)esin t
)
.

Solution. Check that F is conservative, so
∫
C F ·dr⃗ depends on the end-points of C only. Solving

∇f = F , a potential function f is given by

f(x, y, z) = (
3

2
x2 + xy2 + x2z) + (eyz +

1

2
y2) +

1

2
ez

2
.

By the Fundamental Theorem of Calculus for line integrals,∫
C
F · dr⃗ = f(γ(1))− f(γ(0)).

3. Calculate the line integral
∫
C F · dr⃗ where

(a) F (x, y) = (xy3, 0) and C is the unit circle x2 + y2 = 1 oriented counterclockwise;

(b) F (x, y) = (−y
√

x2 + y2, x
√

x2 + y2) and C is the circle x2+ y2 = 2x oriented counterclock-

wise.

Solution. (a) Parametrization: r⃗(t) = (cos t, sin t), t ∈ [0, 2π].∫
C
F · dr⃗ =

∫ 2π

0
(cos t sin3 t, 0) · (− sin t, cos t) dt

= −
∫ 2π

0

∫
cos t sin4 t dt

= −1

5
sin5 t

∣∣∣2π
0

= 0.

(b) By Green’s Theorem,∫
C
F · dr⃗ =

∫∫
D

(
∂(x
√

x2 + y2)

∂x
− ∂(−y

√
x2 + y2)

∂y

)
dA =

∫∫
D

(
3
√

x2 + y2
)
dA,

where D = {(x, y) ∈ R2 : (x− 1)2 + y2 ≤ 1}.
Using polar coordinates,∫

C
F · dr⃗ =

∫∫
D
3
√

x2 + y2 dA = 3

∫ π/2

−π/2

∫ 2 cos θ

0
r · r drdθ

= 3

∫ π/2

−π/2

8

3
cos3 θ dθ

= 8

[
sin θ − 1

3
sin3 θ

]π/2
−π/2

=
32

3
.



4. Let C be the circle x2 + y2 = 2x oriented counterclockwise. Evaluate the line integral
∫
C F · dr⃗

where

F (x, y) =
(
−y2 + ex

2
, x+ sin(y3)

)
.

Solution. By Green’s Theorem,∫
C
F · dr⃗ =

∫∫
D

(
∂(x+ sin(y3))

∂x
− ∂(−y2 + ex

2
)

∂y

)
dA =

∫∫
D
(1 + 2y) dA,

where D = {(x, y) ∈ R2 : (x− 1)2 + y2 ≤ 1}.

Using polar coordinates,∫
C
F · dr⃗ =

∫∫
D
(1 + 2y) dA =

∫ π/2

−π/2

∫ 2 cos θ

0
(1 + 2r sin θ) · r drdθ

=

∫ π/2

−π/2

(
1

2
(2 cos θ)2 +

2

3
(2 cos θ)3 sin θ

)
dθ

=

∫ π/2

−π/2
(1 + cos 2θ) dθ

= π.

5. Find the area of the region enclosed by the curve

γ(t) =
(
cos t+ t sin t, sin t− t cos t

)
, 0 ≤ t ≤ 2π

and the line segment from (1,−2π) to (1, 0).

Solution. Let Ω be the enclosed region, C be the curve γ, and L be the line segment from

(1,−2π) to (1, 0).

By Green’s Theorem,

Area =

∫
∂Ω

x dy =

∫
C
x dy +

∫
L
x dy

=

∫ 2π

0
(cos t+ t sin t)(t sin t) dt+

∫ 0

−2π
(1)(1) dt

=

∫ 2π

0

(
t cos t sin t+ t2 sin2 t

)
dt+ 2π

=
1

2

∫ 2π

0

(
t sin 2t+ t2 − t2 cos 2t

)
dt+ 2π.

Using integration by parts,∫ 2π

0
t sin 2t dt = − t

2
cos 2t

∣∣∣2π
0

+
1

2

∫ 2π

0
cos 2t dt = −π,



∫ 2π

0
t2 cos 2t dt =

t2

2
sin 2t

∣∣∣2π
0

− 1

2

∫ 2π

0
2t sin 2t dt = π.

Hence,

Area =
1

2

(
−π +

(2π)3

3
− π

)
+ 2π =

4π3

3
+ π.

Alternatively,

Area =
1

2

∫
C
−y dx+ x dy +

1

2

∫
L
−y dx+ x dy

=
1

2

∫ 2π

0
t2 dt+

1

2

∫ 0

−2π
(0 + 1) dt

=
4π3

3
+ π.

6. Let 0 < b < a. Find the area under the curve f(t) = (at − b sin t, a − b cos t), 0 ≤ t ≤ 2π, above

the x-axis.

Solution. Note that f ′
1(t) = a − b cos t > 0 for all t ∈ [0, 2π], so the x-coordinate of the points

on the curve increases as t increases. Denote the required region by R. Let L1, L2, L3, L4 be the

left, bottom, right and top boundaries of R oriented counterclockwise.

By Green’s Theorem,

Area(R) = −
∫
∂R

y dx = −
4∑

i=1

∫
Li

y dx.

Note that ∫
L1

y dx =

∫
L3

y dx = 0

since x is constant on L1 and L3; and ∫
L2

y dx

since y = 0 on L2. Therefore,

Area(R) = −
∫
L4

y dx =

∫
−L4

y dx

=

∫ 2π

0
(a− b cos t)2 dt

= π(2a2 + b2).

7. Suppose C is a piecewise C1 closed curve in R2 that intersects with itself finitely many times and

does not pass through the origin. Show that the line integral

1

2π

∫
C
− y

x2 + y2
dx+

x

x2 + y2
dy

is always an integer. This is called the winding number of C around the origin.



Solution. Let γ(t) = (x(t), y(t)) : [0, 1] → R2\{(0, 0)} be a piecewise C1 parametrization of C.

We claim that there is a piecewise C1 function

θ : [0, 1] → Rsuchthatγ(t) = ∥γ(t)∥(cos θ(t), sin θ(t)).

Define

θ(t) = Arg(γ(0)) +

∫ t

0
F (γ(s)) · γ′(s) ds,

where Arg(γ(0)) is the principal argument of γ(0) within [0, 2π), and F : R2\{(0, 0)} → R2 is the

vector field

F (x, y) =

(
− y

x2 + y2
,

x

x2 + y2

)
.

Let Γ(t) := ∥γ(t)∥(cos θ(t), sin θ(t)). Then Γ(0) = γ(0), and

Γ′(t) =
x(t)x′(t) + y(t)y′(t)√

x(t)2 + y(t)2
(cos θ(t), sin θ(t)) + ∥γ(t)∥(− sin θ(t), cos θ(t))F (γ(t)) · γ′(t)

=
1

∥γ(t)∥
(
x′(t)(x(t) cos θ(t) + y(t) sin θ(t)), y′(t)(x(t) cos θ(t) + y(t) sin θ(t))

)
=
(
x′(t), y′(t)

)
= γ′(t).

Thus γ(t) = Γ(t) = ∥γ(t)∥(cos θ(t), sin θ(t)). Since C is a closed curve, we must have γ(0) = γ(1),

and hence θ(1) = θ(0) + 2nπ for some integer n.

Finally, direct computation gives

1

2π

∫
C
− y

x2 + y2
dx+

x

x2 + y2
dy =

1

2π

∫ 1

0
−∥γ(t)∥2 sin2 θ(t)θ′(t)

∥γ(t)∥2
+

∥γ(t)∥2 cos2 θ(t)θ′(t)
∥γ(t)∥2

dt

=
1

2π

∫ 1

0
θ′(t) dt

=
1

2π
(θ(1)− θ(0)) = n ∈ Z.

Challenging Exercises

1. Suppose F : Rn → Rn is a vector field on Rn defined by

F (x1, x2, · · · , xn) = (f(r)x1, f(r)x2, · · · , f(r)xn)

where f : R → R is a given function and r :=
(∑n

i=1 x
2
i

) 1
2 .

(a) Suppose f is differentiable everywhere. Prove that for all i, j = 1, · · · , n

∂Fi

∂xj
=

∂Fj

∂xi

on Rn \ {⃗0} where Fk is the k-th component function of the vector field F .

(b) Suppose f is continuous everywhere. Prove that F is a conservative vector field on Rn.



Solution. (a) Note that, for r > 0,

∂Fi

∂xj
=

∂(f(r)xi)

∂xj

= f(r)δij + xi
∂f

∂r

∂r

∂xj

= f(r)δij +
∂f

∂r

xixj
r

.

Since this expression is symmetric in i and j, we must have
∂Fi

∂xj
=

∂Fj

∂xi
on Rn\{⃗0}.

(b) One can show that g(x) =

∫ r

0
tf(t) dt if ∥x∥ = r is the required potential function.


