RQCWV(/ N THEOREM 8—Divergence Theorem Let F be a vector field whose compo-
. nents have continuous first partial derivatives, and let S be a piecewise smooth
oriented closed surface. The flux of F across § in the direction of the surface’s
outward unit normal field n equals the triple integral of the divergence V - F over
the region D enclosed by the surface:
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THEOREM 5—Green’s Theorem (Flux-Divergence or Normal Form) Let C
be a piecewise smooth, simple closed curve enclosing a region R in the plane.
Let F = Mi + Nj be a vector field with M and N having continuous first partial
derivatives in an open region containing R. Then the outward flux of F across C
equals the double integral of div F over the region R enclosed by C.
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THEOREM 4—Green’s Theorem (Circulation-Curl or Tangential Form) Let C

be a piecewise smooth, simple closed curve enclosing a region R in the plane.

Let F = Mi + Nj be a vector field with M and N having continuous first partial

derivatives in an open region containing R. Then the counterclockwise circula- 7
tion of F around C equals the double integral of (curl F) - k over R.
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) THEOREM 5  Stokes’ Theorem
¢ The circulation of a vector field F = Mi + Nj + Pk around the boundary C of

an oriented surface S in the direction counterclockwise with respect to the sur-
face’s unit normal vector n equals the integral of V X F - n over S.
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Example 2. Suppose F = 2%i +2j + 2%k and S is given as the graph | C
of some function z = g(x,y), oriented so n points upwards. ! :
Show that F -dr = area of R, where C' is the boundary of S, com- @
Jo
patibly oriented, and R is the projection of S onto the zy-plane. c’
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Solution. We have curl F = |0, 0, 0.| = k. By Stokes’ theorem, (cf. V9, (12))
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sincen-k >0, |n-k|=n-k; therefore

j{F-dr = /dA = area of R .
c R



versed counterclockwise as viewed from above (Figure 16.64).
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Example 9.

is consistent with the counterclockwise motion around C. To apply Stokes’ Theorem, we find
i
curIF=V><F=i 2 2 = (x — 32)j +yk
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On the plane, z equals 2 — 2x — y, s0
VXF=x-32~2x—y)j +yk=(Tx + 3y — 6)j +yk

and

1 1
VXF-n=—(7x+3—6+v)=—(7x+4—6).
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The surface area element is
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fl“'dl‘ = ﬂ V X F ndo Stokes’ Theorem, Eq. (4)
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The circulation is

EXAMPLE 9 Use Stokes” Theorem to evaluate /F dr, if F = xzi + xyj + 3xzk
and C is the boundary of the portion of the plane 2x = y + z = 2 in the first octant, tra-

Solution The plane is the level surface f(x, y, z) = 2 of the function f(x,y,2) = 2x +
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