Recall:

THEOREM 8—Divergence Theorem Let \mathbf{F} be a vector field whose components have continuous first partial derivatives, and let S be a piecewise smooth oriented closed surface. The flux of \mathbf{F} across S in the direction of the surface's outward unit normal field \mathbf{n} equals the triple integral of the divergence $\nabla \cdot \mathbf{F}$ over the region D enclosed by the surface:

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \iiint_{D} \nabla \cdot \mathbf{F} \, dV. \tag{2}$$
Outward
Divergence
flux
integral

is the 3-dim version of

THEOREM 5—Green's Theorem (Flux-Divergence or Normal Form) Let C be a piecewise smooth, simple closed curve enclosing a region R in the plane. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ be a vector field with M and N having continuous first partial derivatives in an open region containing R. Then the outward flux of \mathbf{F} across C equals the double integral of div \mathbf{F} over the region R enclosed by C.

$$\oint_{C} \mathbf{F} \cdot \mathbf{n} \, ds = \oint_{C} M \, dy - N \, dx = \iint_{R} \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) dx \, dy$$
Outward flux

Divergence integral

Q; What is the 3-dim version of

THEOREM 4—Green's Theorem (Circulation-Curl or Tangential Form) Let C be a piecewise smooth, simple closed curve enclosing a region R in the plane. Let $\mathbf{F} = M\mathbf{i} + N\mathbf{j}$ be a vector field with M and N having continuous first partial derivatives in an open region containing R. Then the counterclockwise circulation of \mathbf{F} around C equals the double integral of (curl \mathbf{F}) \cdot \mathbf{k} over R.

$$\oint_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \oint_{C} M \, dx + N \, dy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy \tag{3}$$

Note on - on = VXF. (0,0,1) for RCXY plane,

A:

THEOREM 5 Stokes' Theorem

The circulation of a vector field $\mathbf{F} = M\mathbf{i} + N\mathbf{j} + P\mathbf{k}$ around the boundary C of an oriented surface S in the direction counterclockwise with respect to the surface's unit normal vector \mathbf{n} equals the integral of $\nabla \times \mathbf{F} \cdot \mathbf{n}$ over S.

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma \tag{4}$$

Counterclockwise Curl integral circulation

Informal Roof: Divide S in & small pieces (Ri)

If we let all the rectangles be small enough, then every Ri can be approximated by a plane region.

It suffices to show stokes than for every Ri. Actually it's exactly Green than if Ri is a plane region.

outer integral
$$= -\frac{1}{2} \cos \theta \Big|_{0} = -\pi$$
, which checks.

Example 2. Suppose $\mathbf{F} = x^2 \mathbf{i} + x \mathbf{j} + z^2 \mathbf{k}$ and S is given as the graph of some function z = g(x, y), oriented so \mathbf{n} points upwards.

Show that $\oint_C \mathbf{F} \cdot d\mathbf{r} = \text{area of } R$, where C is the boundary of S, compatibly oriented, and R is the projection of S onto the xy-plane.

Solution. We have curl
$$\mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial_x & \partial_y & \partial_z \\ x^2 & x & z^2 \end{vmatrix} = \mathbf{k}$$
. By Stokes' theorem, (cf. V9, (12))
$$\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \mathbf{k} \cdot \mathbf{n} \, dS = \iint_R \mathbf{n} \cdot \mathbf{k} \frac{dA}{|\mathbf{n} \cdot \mathbf{k}|},$$

since $\mathbf{n} \cdot \mathbf{k} > 0$, $|\mathbf{n} \cdot \mathbf{k}| = \mathbf{n} \cdot \mathbf{k}$; therefore

$$\oint_C \mathbf{F} \cdot d\mathbf{r} \ = \ \int_R dA \ = \ \text{area of} \ R \ .$$

FIGURE 16.64 The planar surface in Example 9.

EXAMPLE 9 Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, if $\mathbf{F} = xz\mathbf{i} + xy\mathbf{j} + 3xz\mathbf{k}$ and C is the boundary of the portion of the plane 2x + y + z = 2 in the first octant, traversed counterclockwise as viewed from above (Figure 16.64).

Solution The plane is the level surface f(x, y, z) = 2 of the function f(x, y, z) = 2x + y + z. The unit normal vector

$$\mathbf{n} = \frac{\nabla f}{|\nabla f|} = \frac{(2\mathbf{i} + \mathbf{j} + \mathbf{k})}{|2\mathbf{i} + \mathbf{j} + \mathbf{k}|} = \frac{1}{\sqrt{6}} \left(2\mathbf{i} + \mathbf{j} + \mathbf{k} \right)$$

is consistent with the counterclockwise motion around C. To apply Stokes' Theorem, we find

curl
$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ xz & xy & 3xz \end{vmatrix} = (x - 3z)\mathbf{j} + y\mathbf{k}.$$

On the plane, z equals 2 - 2x - y, so

$$\nabla \times \mathbf{F} = (x - 3(2 - 2x - y))\mathbf{j} + y\mathbf{k} = (7x + 3y - 6)\mathbf{j} + y\mathbf{k}$$

and

$$\nabla \times \mathbf{F} \cdot \mathbf{n} = \frac{1}{\sqrt{6}} \left(7x + 3y - 6 + y \right) = \frac{1}{\sqrt{6}} \left(7x + 4y - 6 \right).$$

The surface area element is

$$d\sigma = \frac{|\nabla f|}{|\nabla f \cdot \mathbf{k}|} dA = \frac{\sqrt{6}}{1} dx dy.$$

The circulation is

$$\oint_{C} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \, d\sigma \qquad \text{Stokes' Theorem, Eq. (4)}$$

$$= \int_{0}^{1} \int_{0}^{2-2x} \frac{1}{\sqrt{6}} \left(7x + 4y - 6 \right) \sqrt{6} \, dy \, dx$$

$$= \int_{0}^{1} \int_{0}^{2-2x} (7x + 4y - 6) \, dy \, dx = -1.$$

Remark: To evaluate $\oint_C \vec{F} \cdot d\vec{r}$, if C is "bad", but C bounds something "good", we may use Stokes thin. It doesn't depend on the Choice of "something".