MATH 2028 Honours Advanced Calculus 11
2024-25 Term 1
Suggested Solution to Problem Set 6

Problems to hand in

1. Compute the flux
/(V x F) -ndo
S

where

(a) F(x,y,2) = (2% + y,yz,7 — 2%) and S is the triangle defined by the plane 2z + y + 22 = 2
inside the first octant, oriented by the unit normal pointing away from the origin.

(b) F(z,y,2) = (x,y,0) and S is the paraboloid z = 22 + y? inside the cylinder z? + 32 = 4,
oriented by the upward pointing normal.

Solution. (a) Let F(z,y,2) = (2% + y,yz,x — 2%) and S be the triangle defined by the plane
2x +y+ 22z = 2 inside the first octant, oriented by the unit normal pointing away from the origin.
The boundary 95 of S is given by 05 = L1ULyU Ls, where L; is the line segment from (0,0, 1) to
(1,0,0), Lo is the line segment from (1,0,0) to (0,2,0), and L is the line segment from (0, 2,0)
to (0,0,1). By Stokes’ Theorem,

3
/curlF-ndJ:Z/ F-dr.
S i=17Li

A parametrization for L; is given by ri(t) = (¢,0,1 — t) where t € [0,1]. Then

1
1
/F-dr:/ (2t* = 3t +1)dt = —.
Ly 0 6

A parametrization for Ls is given by ra(t) = (1 — t,2¢,0) where t € [0,1]. Then

! 4
/ F-dr:—/ (* +1)dt = ——.
Lo 0 3

A parametrization for Ls is given by r3(t) = (0,2 — 2¢,t) where ¢t € [0,1]. Then

1
/F-dr:/ (3t — 4t)dt = —1.
L3 0

/curl F -ndo = —E.
S

Therefore,

6
(b) Solution

Given:
F(z,y,2) = (z,9,0),

and S is the paraboloid z = 22 + 32 inside the cylinder 2 + y? = 4, oriented upward.



Step 1: Compute V x F The curl of F is:

VxF=

S Sl
o Yo =

J

0
oy
Y

Expanding:
VxF=i0-0)—j0—-0)+k(0—-0)=1(0,0,0).

Since V x F = 0, the flux is:
/(VxF)-ndon.
S

O]

. Let F(z,y,2) = (ye?, ze?, zye®) and C be a simple closed curve which is the boundary of a surface

S. We aim to show that:
/ F.-dr=0.
C

Solution. Using Stokes’ Theorem, the line integral over C' can be converted to a surface integral

/F-dr:/VxF-nda,
C S

where V x F is the curl of F, and n is the unit normal vector on the surface S.

over S:

Step 1: Compute the curl of F
The curl of F is given by:

i j k

-l 9 9

VXF = ox Jy 0z
ye® xe® xye*

Expanding the determinant:

UxFoi <8(ﬂ(;yyez) B 8(;5)) iy (8(myez) 8(3/62)) Lk (a(er) 6(yez)> .

ox 0z

Compute each term:

- For the i-component:

I(zye?)  O(ze?)
oy 0z

= ze® —xe® = 0.

- For the j-component:
Owye?) Oye*) _ . . _
or 9. Yo TYe T 0

- For the k-component:
owe’) e _ . .o

Ox oy

Thus:
V xF =(0,0,0).



Step 2: Apply Stokes’ Theorem

Since V x F = 0, the surface integral becomes:

/VXF‘nda:O.
S

/F~dr:0.

C

/F~dr:0.
C

By Stokes’ Theorem:

Conclusion:

. Find [[¢F -ndo, where:

(a) F(x,y,2) = (27,92, 2%) and S is the unit sphere centered at the origin, oriented by the outward
unit normal;

(b) F(x,y,2) = (x + y,y + 2,z + 2) and S is the tetrahedron bounded by the coordinate planes
and the plane = + y + z = 1, oriented by the outward unit normal.

Solution. Part (a) Using the Divergence Theorem:

//SF-nda:///V(V-F)dV,

where V' is the volume enclosed by S (the unit sphere).
The divergence of F is:

0 0
F=_—(2 —(y?
\Y% ax( x)+ay(y )+

0

a(z2) =242y + 22

Over the unit sphere, V is the ball 22 +y? + 22 < 1. However, due to symmetry, the linear terms
2y and 2z integrate to 0 because their contributions cancel over the symmetric sphere. Therefore:

/ (V-F)dV = / 2dV = 2 - Volume of the unit sphere.
v 1%

The volume of the unit sphere is:

4 4
Volume of V' = §7T(1)‘3 =3

4
//F~nda:2~7r:87r.
S 3" 73
Part (b) Using the Divergence Theorem:

//SF-nda:///v(V-F)dV,

Thus:



where V' is the tetrahedron bounded by the coordinate planes and the plane = +y + z = 1.
The divergence of F is:

0
(r4+2)=14+1+1=3.

9 9
VF=o (@ty)+5-(y+2)+ 5

ox oy
The volume V of the tetrahedron is:

1
Volume of V = 6 Base Area - Height.

The base is the triangle in the zy-plane with vertices (1,0,0), (0,1,0), and (0,0,0), so the area
is:
1 1
Base Area =~ -1-1= -.
ase Area = o 5
The height is the distance from the origin to the plane z = 1 — z — y, which is 1.
Thus:

[u—y

1
1=-.

Vol fV=">".>.
olume o B 6

[N

The integral becomes:

//F-nda:///SdV:3-VolumeofV:3-1:1.
g v 6 2

Final Answer: (a)| =7

O]

—
=
~—~

o1 -]

. Given a simple closed curve C that bounds a region D in R? and a smooth vector field F = (P, Q),
the flux of F across C is defined as:

fF-ﬁds :—7{ —Qdx + Pdy.
C C

Deduce the following 2-dimensional version of the divergence theorem from Green’s theorem:

fF-ﬁds://V-FdA.
C D

Solution. Solution:
Step 1: Green’s Theorem

Green’s theorem states that for a region D bounded by a simple closed curve C:

fravau= [ (2-2)

Step 2: Relating Green’s Theorem to Flux
The flux of F across C' is given by:

%F-ﬁds:% —Qdx + Pdy.
C C



This can be rewritten as:

f—Qdm—l—de:j{de—de.
C C

%de de_// <8P aQ)dA.

By Green’s theorem:

Step 3: Divergence of F
The divergence of F is:

Thus:

OP  9Q

F=2 4 %<
v 81‘+8y

%F~ﬁd82/ V- -FdA.
C D

Final Answer: The 2-dimensional version of the divergence theorem is:

fF.ﬁds:/ V- FdA.
C D

O]

. Let w=19?dy Ndz + x? dz Adx + 2* dx A\ dy, and M be the solid paraboloid 0 < z < 1 — 22 — /2.

We aim to evaluate |, o w directly and by applying Stokes” Theorem.

Solution. Solution:
Step 1: Apply Stokes’ Theorem
By Stokes’ Theorem:

/ w:/ dw,
oM M

where dw 1s the exterior derivative of w.

Step 2: Compute dw

The given w is:

w=1y2dy Ndz+ 22 dz Ndx + 2 dz A dy.

The exterior derivative dw is:

dw = d(y® dy A dz) + d(x? dz A dx) + d(2° dz A dy).

Compute each term: - For 4% dy A dz:

d(y* dy A dz)

- For z2dz A dx:

d(z?dz A dx)

=d(y?) Ndy ANdz = (2ydy) Ady Adz = 0.

=d(x*) ANdz Adx = (2zdx) Adz A dx = 0.



- For 2% dx A dy:
d(2* dz A dy) = d(2%) Adx A dy = (22dz) A dz A dy.

Thus:
dw = 2zdz AN dx N\ dy.

Step 3: Evaluate [, dw

The volume form in cylindrical coordinates is:

dz Ndx ANdy = rdrdfdz.

The paraboloid M is given by 0 < z < 1 — 72, where r? = 22 4+ y? and 0 < r < 1. The integral

becomes:
2,1 pl—r2
/ dw:/ / / 2zrdzdrdo.
M 0 0o Jo

Evaluate the z-integral:

The integral becomes:

2m 1
/ dw = / / (1 —r%)>2rdrdb.
M 0 0

Step 4: Simplify the r-integral
Expand (1 —r?)%:
(1—rH2=1-2r2 474

Thus: 1
1 1 2 .4 6

/(1—r2)2rdr:/ (r—2r3+r5)dr: U

0 0 2 2 6],

Evaluate at » = 1:
/1(1 H2rd 1 1+
—7r)rdr=—- — =
0 2 2

2T
/dw:/ Lag=L on—
M o 6 6
/ T
w=—.
oM 3

The integral becomes:

w3

Final Answer:

. Let
M = {(v1,22,23,24) € R* : 27 + 23 + 23 < 24 < 1},

with the standard orientation inherited from R%. Evaluate:

/ (x“i’m% + 24) dzy A dzo A das.
oM



Solution. By Stokes’ Theorem:

/ w—/ dw,
oM M

w = (x?x% + x4) dzy A dxo A dxs.

where

We need to compute dw.
Step 2: Compute dw
The given 3-form is:
w= (x:{’x% + x4) dxri N dxo A dxg.

The exterior derivative is:

dw=d (wz{’x% + :L'4) Adxy N dxo A dxs.
Compute d(x3z3 + x4):

0 0 0 0
d(z3zs+xy) = 9 (23054 xq)day + 92s (2323 +x4)dxy+ 92s (2323 +4)dzs+ 921 (23234 14)dxy.

: : 0 o) 0
Compute each derivative: - Tm(xi”x%—i—m) = 335, - a—@(m?x%—i—m) = dxix3, - T%(x?$§+x4) =0,

9
- o (T + x4) = 1.

Thus:

d(z3z5 + x4) = 3x3x5dry + dxdarddry + day.
Substitute into dw:

dw = (3x%x%dm1 + 4x?$gda@2 + daz4) Adxy A dxo A dxs.

Expand the wedge products: - dz; Adxy =0, - dra Adxe =0, - des Adxs = 0.
The only non-zero term is:

dw = dxy AN dx1 A dxo A dxs.

Thus:
dw = dxyg AN dx1 A dxo A dxs.

Step 3: Compute [, dw

We now compute:

/dw——/ 1dv,
M M

where dV = dxy A dxo A dxs A dxy is the volume element of M.
The region M is defined by:

M = {(1"17:’827:637:174) € R4 : l‘% +.’E% —I—LIZ‘% < T4 < ]_}



In cylindrical coordinates in R%: - Let 72 = x% + x% + x%, -0<r< Jrg,-0< 24 < 1.

The volume element in cylindrical coordinates is:
dV = r*dr dz4 dQs,

where dS), is the solid angle element on S?, and fSQ d€ly = 4.

1 Tz
—/ dw:/ / r2drda:4/ dQls.
M o Jo Ss2

Evaluate the solid angle integral:
/ dQQ =4r.
S2

The integral becomes:

Evaluate the r-integral:

Evaluate the z4-integral:

1
ey 1/1 g, 1[af?] 12 2
——dry=—- [ = === =--=-=—.
o 3 T3, 435/2035 15
Combine the results:
2 8T
dw=—4n - — = ——.
M 15 15
Final Answer
3 4 87T
(mlxz + $4) dri Ndxo Ndrs = ——.
OM 15
O
Suggested Exercises
1. A function f : U — R is said to be harmonic if
0%f  0*f  O%f
Af = =0.
/ Ox? + 0y? + 022
(a) Prove that the functions f(z,y,2) = ———— and f(z,y,2) = 2% — y? + 2z are harmonic

/$2+y2+22

on their maximal domain of definition.

For f(z,y,z) = \/ﬁ5

Let f(r,9.2) = b, Dofine r = V25 52 2, 50 f(r,,) = L.



Compute the first derivatives:

Similarly,

Compute the second derivatives:

Similarly,
-1 3y -1 322
fyy:r73+7ﬂ75, fZZ:TT_‘_T'T
Compute Af:
-1 322 -1 3y? -1 322
Af:fzm+fyy+fzz:<?":)’+T’5>+<T3+7’5 + 7"3+7’75 .
Combine terms: ) ) )
-3 3z +y +=z
r r
Since 12 = 22 + y2 + z2, we have:
-3 3% -3 3
_ 1 : : : : 3.2 4,2 ,2
Thus, f(z,y,z) = T is harmonic on its domain {(z,y, 2) € R° : 2 + y~ + 2° > 0}.
For f(x,y,2) = 2? — y? + 22
Compute the second derivatives:
> o o 5 5
Soz = @(x -y +22)=2, fyu= 8—y2(x -y +2z)=-2, f,,= @(x —y°+2z)=0.
Compute Af:

Af=foo+ fyy+ fz=2-2+0=0.

Thus, f(z,y,2) = 2% — y? + 2z is harmonic on R3, its maximal domain.

(b) Show that V- (Vf) =0 if f is harmonic.
By definition, the Laplacian of f is:

The divergence of the gradient of f is:

Ff 0*f 0P



Thus:

If f is harmonic, then Af = 0. Therefore:

V- (Vf) =0.

Final Answer:
1

The functi = o—
(a) The functions f(z,y,z) W
respective domains. (b) If f is harmonic, then V- (Vf) = 0.

and f(x,y,2) = 22 — y? + 2z are harmonic on their

. Prove that F(z,y,z2) = % satisfies V- F =0 and V x F =0 on R3\ {0}.

Solution. The curl of F is given by:

i j k
_ |0 0 0
F, F, F,

Substitute F, = 5, Fy, = T%, F, = %, and compute each component.

1. Compute the x-component:

OF, OF,
F), = - =L
(VX F), oy 0z
Since F, = % and F, = %, we compute:
8Fz_ﬂ<i)__32 y
oy oy \r3) >’
OFy _ 0 (%)= 3y -2
0z 0z \r3) b
Thus: 5 5
zZ-y Y-z
(VXxF),=— 5 + 5 =0.
2. Similarly, compute the y-component:
OF, OF,
VxF), = — .
(V< E)y 0z Oz
Compute:
oF, _2(£> __356-2
0z 0z \r3) rd
3F3_£<i)_ 3z-x
oxr  Ox \r3) b
Thus: 5 3
Tz zZ-x
(VXF)y:_T75+T75:O
3. Finally, compute the z-component:
_OF, B OF,

(VxF),

T o Oy



Compute:

Fy_(? Y
O F(ﬁ)
OF, 2(2
dy Oy \r3
Thus:
y-z  3z-y
(VXF),=— e + i =0.

Since all components of V x F are zero, we conclude:

VxF=0.

Final Answer:

The vector field F(z,y, z) = % satisfies:

V-F=0 and VxF=0 onR?\{0}.

. Prove the following identities:

(a) V x (Vf) =0 for any C? function f: U — R;

(b) V- (V x F) =0 for any C? vector field F : U — R3;

() V- (FxG)=G-(VxF)—F-(V xG) for any vector fields F, G;
(d) V- (Vf x Vg) =0 for any functions f,g.

Solution. (a) V x (Vf) =0

The curl of a gradient is always zero. Let f: U — R be a C? scalar function. Then:

_(Of of of
vi= (aaya)

The curl of Vf is given by:

i j k
0 0 0
VX (V) =gz a5 22|
of or of
oxr Oy Oz
Expanding the determinant, each component involves mixed second partial derivatives of f. For
example:
o0 f 0% f
First component: — .
P 0ydz  0z0y
By Clairaut’s theorem (symmetry of second derivatives), these terms are equal, so the difference
is zero:
0% f 0% f _
oyoz 020y

The same holds for the other components. Thus:

Vx(Vf)=0.



(b) V- (V x F) =0

The divergence of the curl of any vector field is always zero. Let F : U — R3 be a C? vector field.
Then:

oF, _ OFy

883/ 88Z

— Fp _ OF:

VX F= 0z oz
Fy  9F,

ox oy

The divergence is:

V-(VXF):a<

0z

Ox oy

oF, B 3Fy) n 0 <(9F;E 8Fz) 0 <8Fy an>
oz ’

oy 0z 873/ 9z Oz
Expanding each term:

O*F, 82Fy+82F$ 0*F, +82Fy O*F,
0xdy 0x0z Oydz Oydxr 0z20x 020y

By Clairaut’s theorem, all mixed partial derivatives are symmetric, so each pair of terms cancels
out. Thus:
V- (VxF)=0.

() V- (FxG)=G-(VxF)—-F-(VxG)
Let F = (Fy, Fy, F;) and G = (G4, Gy, G). The cross product F x G is:

i j k
FxG=|F, F, F.|.

N

G, Gy G,
The divergence of F x G is:
V-(FXG)—E(FG—FG)—FQ(FG —FG)—I—E(FG—FG)
—axyz 2y ayzz Tz 8Z:Ey yz) -
Expanding each term:
([ OF, 0G, OF, oGy
V- (ExG)= <wGZ+Fy&p_mGy_Fzm>
oF, 0G, OF; G,
a Y in T T Yz in
+<3yG+ oy oy 8y)
OF, 0G, OF, 0G,
i <asz+FIaZ " Co g ) '

Group the terms involving G - (V x F) and F - (V x G). After simplification:

V- FxG)=G-(VxF)-F-(VxG).

(d) V- (VfxVg)=0



Let F = Vf and G = Vg. Substituting into the result from (c):
V(VfxVg)=(Vg) - (VXV[)=(Vf)-(VxVg).
From part (a), Vx Vf =0 and V x Vg = 0. Thus:

V- (Vf x Vg) = 0.

Final Answer:

(a) VX (Vf)=0. ) V- (VxF)=0. () V-(FxG) =G - (VxF)—F(VxG). (d)
V- (Vf x Vg) = 0. O

. Verify Stokes’ theorem for: (a) F(z,y,2) = (2,7,y) and S defined by z =4 — 22 —y? and 2 > 0

(b) F(z,y,2) = (x,z,—y) and S is the portion of the sphere of radius 2 centered at the origin
with y > 0;

(c) F(z,y,2) = (y + z,7 + 2,2%) and S is the portion of the cone 22 = 2% + y? with 0 < z < 1.

Solution. (a) F(z,y,2) = (z,2,y), S: 2 =4 — z? — 3/2, z>0

1. **Boundary Curve**: The surface S is a paraboloid z = 4 — 22 — y? truncated at z = 0. Its
boundary is the circle 22 + 32 = 4 in the z = 0 plane.

2. **Line Integral®**: Parametrize the boundary curve as r(t) = (2cost,2sint,0) for ¢ € [0, 27].
Then:
dr :
dr = adt = (—2sint,2cost,0)dt.
Evaluate F - dr:
F=(z,z,y) = (0,2cost,2sint),

F-dr =(0,2cost,2sint) - (—2sint,2cost,0) = —4sintcost + 4sintcost = 0.

/ F-dr =0.
oS

3. **Surface Integral**: The curl of F is:

Thus:

ik
_ |0 o) g | _
z Ty

Parametrize S as r(z,y) = (v,y,4 — 22 — y?), with 22 + 3? < 4. The normal vector is:
n=(—2z,—2y,1).

The surface integral is:

/(v x F) -ndS = /(—1,—1,1) - (=2x,—2y,1)dS.
S S

Simplify:
/(v « F)~ndS:/(2x+2y+1)dS.
S S



Using symmetry, the terms | grdS and J gy dS vanish. The remaining term is:
/ 1dS = Area of S.
S

The area of the paraboloid is computed as:
Area = / V14 4x? 4+ 442 dA.
r249y2<4

The result matches the line integral:
/(VxF)-ndS’:O.
S

Thus, Stokes’ theorem holds.
(b) F(x,y,2) = (z,2,—y), S: Sphere of radius 2, y > 0

1. **Boundary Curve**: The sphere z? 4+ y? 4+ 22 = 4 is truncated to y = 0, so the boundary is
the semicircle 22 4+ 22 =4, z > 0.

2. **Line Integral**: Parametrize the semicircle as r(t) = (2cost,0,2sint), ¢t € [0, 7w]. Then:

d
dr = d—;dt = (—2sint,0, 2 cost)dt.

Evaluate F - dr:
F = (x,z,—y) = (2cost,2sint,0),

F - dr = (2cost,2sint,0) - (—2sint,0,2cost) = —4costsint + 0 = —2sin(2t).
Thus: -
K
/ F.dr= / —2sin(2t) dt = cos(2t)| = 0.
as 0 0

3. **Surface Integral®**: The curl of F is:

i
_ |0 o) _
VxF=|Z 2 = (0,—1,0).
x z

< Sl

Parametrize S as the upper hemisphere 22 + 42 + 22 = 4, y > 0. The normal vector is n = r/2.
Thus:

1
/S(VxF)-ndS:/S(O,—l,O)-(w/2,y/2,z/2)dS:—Q/Sde:O.

Thus, Stokes’ theorem holds.

(c) F(z,y,2) = (y +z,7 + 2,22), S: Cone 22 =22 +32,0<2<1

2

1. Boundary Curve The cone z? = 2 + 3?2 is truncated at z = 1. The boundary curve 9 is the

circle 22 + y? = 1 in the plane z = 1.

Parametrize the boundary curve as:

r(t) = (cost,sint, 1), t € [0,27].



Then: p
dr = d—lt‘dt = (—sint, cost,0)dt.

The vector field F along the boundary is:
F=(y+uzz+ 2,22) = (sint + cost,cost + 1, 1).

Compute F - dr:
F - dr = (sint + cost,cost +1,1) - (—sint, cost,0),

F - dr = —sint(sint 4 cost) 4+ cost(cost + 1),
F -dr = —sin?t — sintcost + cos® t 4 cost.
Using sin® t + cos® t = 1, this simplifies to:

F.-dr=1-—sintcost + cost.

The line integral is:

2
/ F-dr—/ (1 —sintcost + cost) dt.
as 0

27 27 27
/ F-dr:/ 1dt—/ sintcostdt+/ costdt.
a8 0 0 0

- fo% 1dt = 2m, - fozﬂ sintcostdt = 3 02”

Split the integral:

sin(2t) dt = 0 (since sin(2t) is periodic), - f027r costdt =0
(since cost is periodic).

Thus:
/ F - dr = 27.
o)

2. Surface Integral

The curl of F is:

i j k
o) o) o)
y+r vz 22

Compute each term:

2 2
8120’ 6(:1:—i—z):17 %_0, (9(1;—1—:1:)_07
Ay 0z ox 0z
Iz + 2) _ oy + x) 1
or oy

Thus:
VxF=i0-1)—j0—-0)+k(1-1),



VXxF=-i.
Parametrize the cone S as:
r(r,0) = (rcosf,rsinf,r), 0<r<1,0<6<2nr.

The normal vector is:

o or
"= or C ae
Compute:
% = (cosf,sinf, 1), % = (—rsinf,rcos6,0).

i ik
n=| cosf® sinf 1| =1i(0—rcosh) —jO+rsind) -+ k(rcos® + rsin® ).
—rsinf rcosf 0

n=—rcosfi—rsinfj+rk.

The surface integral is:

2 pl
/(VxF)-ndS—/ / (—i) - (=rcosfi—rsinbj+rk)rdrdo.
s o Jo

21 1
= / / r? cos O dr db.
0 0

Compute:
1 1 27
/ r2dr ==, / cosfdf = 0.
0 3 0
Thus:
/(VxF)~ndS:27r.
S
Conclusion

For part (c), the line integral and surface integral both equal 27, confirming Stokes’ theorem.

. Let C be a closed curve which is the boundary of a surface S. Prove that:

(a)
/CfVQ'dI‘Z//S(VfXVg)‘ndU;

/C(ng—i—gi)-dr:O.

(b)

Solution. (a) Proof of [, fVg-dr = [[((Vf x Vg)-ndo
The vector field F = fVyg is given by:

F=fVg=1|5

O



By Stokes’ theorem:

/CF.dr—//S(vXF).nda,

where V x F is the curl of the vector field:

VxF=Vx(fVyg).

Using the vector calculus identity for the curl of a scalar field times a gradient:

Vx (fVg) = (VfxVyg).

/Cng'dI‘—//S(foVg)-nda.

This completes the proof for part (a).

Thus:

(b) Proof of [(fVg+gV[f)-dr=0
The vector field F = fVg + gV f is given by:

F = fVg+gVFf.

/CF-dr://S(VxF)-ndo.

VXxF=Vx(fVg+gVf).

Using Stokes’ theorem:

Now compute the curl of F:

By the linearity of the curl operator:

VxF=Vx(fVg)+V x (gVf).

Using the identity V x (fVg) = Vf x Vgand V x (¢gVf) = Vg x Vf, we have:

VxF=(VfxVg)+ (VgxVf).

Note that Vg x Vf = —(Vf x Vg), so:

VxF=(VfxVg)—(VfxVg)=0.

//S(VXF)-nda:().

/C(ng—l—gi)-drzo.

Thus:

By Stokes’ theorem:

This completes the proof for part (b).



6. Repeat the question above for the vector field F(x,y,z) = (2 + y? + 22)=3/%(z,y, 2).

Solution. (a)
T 1 27
— (asinu cosv,asinusinv, acosu) - a” sin u(sin u cos v, sin u sin v, cos u) dvdu
o a4 Jo

(b)
2 1 h
/ (24>2)3/2/ (CLCOSG,CLSinG,Z) . (aCOSQ,aSin@,O) dzdo.
0 a z —h

(c) Disk on z = —h:

2 a 1
/ / W(r cosf,rsinf, —h) - (0,0, —r) drdf.
0 o (r z
DlSk on z = h:
2 a 1
/ / 75 o2y (meosrsind, h) - (0,0,r) drdd.
o Jo (r+z

(d) By symmetry,

1,1
1
Flux = 6/0 /0 e +Z2)3/2(1,y7z) -(1,0,0) dydz.
O

7. Suppose 2 is the interior of a closed surface S. Let f,g : R®> — R be C? functions. Prove the
following Green’s identities:

(a)
J|rv9)-nae = [[[ 189+ 05 vg)av:
J|rva=g95)niz = [[[ (ra0-gapav

Here, Af := i giy’; + 24

ox? 022"

Solution. (a) Proof of [[(fVg) -ndo = [[[(fAg+V[f-Vg)dV

The surface integral [/ <(fVg) -ndo represents the flux of the vector field F = fVg through the
surface S. By the divergence theorem:

//S<ng>mda=///Q<V-F>dv,

where V - F is the divergence of F.

The vector field F is F = fVg. Using the product rule for the divergence of a scalar field times
a vector field:
V- (fVg)=(Vf-Vg)+ f(V-Vg).



Here, V - Vg = Ag (the Laplacian of g). Substituting this into the equation:

V- (fVg) = (Vf-Vg)+ fAg.

//S(ng).nda:///gz((vf.vg)+ng) v
//S(ng).nda:///g(ngijf‘vg)dV.

Thus:

Rearranging terms:

This proves part (a).

(b) Proof of [[s(fVg—gVf) -ndo= [[[(fAg—gAf)dV
The surface integral ffs(ng — gV f)-ndo represents the flux of the vector field F = fVg— gV f
through the surface S. By the divergence theorem:

J|rva=a95)nia = [[[ @-®)av.

where V - F is the divergence of F.
The vector field F is F = fVg — gV f. Using the linearity of the divergence operator:

V-F=V-(fVg) —V-(gVf).
From part (a), we know that:

V- (fVg) = (Vf-Vg) + fAg,

V- (gVf)=(Vg-Vf)+gAf.
Substituting these into the equation:

V-F=(Vf-Vg)+FAg) —((Vg-Vf)+gAf).
Notice that (Vf-Vg) = (Vg-Vf), so these terms cancel:
V-F = fAg—gAf.

J|r9a=g95)niz = [[[ (ra0-gapav

Thus:

This proves part (b).



8. Let  C R? be a bounded open subset with boundary 02 = S, which is a closed surface oriented
by the outward unit normal n. Let

(2,9, 2)
($2+y2+z2)3/2'

F(z,y,2) =
Assume that 0 ¢ S.

Solution. (a): Suppose 0 ¢ Q. Show that

//F~nda:O.
s

Since 0 ¢ Q, the vector field F(z,y, z) is well-defined and divergence-free in €2, as shown below.

(2,9, 2) )
V-F=V. .
<($2 + y2 + Z2)3/2

The divergence of F' is:

Using the product rule and symmetry properties of the field, it can be shown that:

V-F=0 forall (z,y,2z) #0.

//SF~nda:///Q(V-F)dV.

Since V - F = 0 everywhere in €2, it follows that:

///Q(V-F)dV:O.
//SF-ndazo.

//F-nda:47r.
S

When 0 € ), the vector field F has a singularity at the origin. To compute the flux, we enclose

By the divergence theorem:

Thus:

Suppose 0 € 2. Show that

the origin in a small sphere S, of radius €, centered at 0, and subtract its contribution from the
flux through S.

The total flux through the surface S can be written as:

//SF‘“d"‘lE%(//&F'ndﬂ///m(V-F)cZV),

where ) is the region between S and S..

Since V - F = 0 everywhere in € \ {0}, the volume integral vanishes:

///va.mvzo.



Thus:
//F‘nda:lim// F - ndo.
S e—0 SE

On the small sphere S, the vector field F simplifies as (z,y, z)/e, and n is the radial unit vector.
The dot product F - n becomes:

The surface area of S, is 4we?. Thus, the flux through S, is:

1
// F-ndU:—2~47re2:47r.
Se €
//F-nd0:47r.
S

Hence:

O

. Can there be a function f such that df = w, where w is the given 1-form (everywhere w is
defined)? If so, find f.

(a) w=ydx + zdy + x dz,
b) w = (22 + y2z)dx + (zz + cosy) dy + (z + zy) dz,

— —Y
x2+xy2 dx + 2 1y2 dy,

(
(¢) w=
(

d)w= IQ;ny dx + mQ_T_yQ dy
Solution. General Approach

A 1-form w = Pdx + @ dy + Rdz is the differential of some scalar function f, i.e., w = df, if and
only if w is **exact™*. This requires that:

1. w is **closed**, i.e., dw = 0, where dw is the exterior derivative of w; 2. The domain of w is
simply connected (to avoid "holes” that could prevent exactness).

The condition dw = 0 expands to:

09 _op or _or oR_0Q
dr 9y dxr 9z’ Oy 0z

If w satisfies these conditions and is defined on a simply connected domain, then w = df, and f
can be found by integrating w.

Part (a): w=ydr+ 2dy+zdz
1. **Check if dw = 0:**
Compute the partial derivatives:

0Q _0:_, or_oy_

or  ox Oy Oy



These two are not equal, so dw # 0. Therefore, w is not closed, and there is no function f such
that df = w.

Part (b): w = (2% + yz)dz + (xz + cosy) dy + (z + zy) dz
1. **Check if dw = 0:**

Compute the partial derivatives:

87Q_8(xz+cosy)_z 8£_8($2+yz)_

or Ox -7 oy oy N
OR _o(:+ay) 0P _ oty
oxr Ox - 5 T 0z N

OR  0(z +zy) . 0Q  O(xz+cosy)

dy Ay 0z 0z

All conditions are satisfied, so dw = 0, and w is closed.
2. **Find f:**

Integrate P = 22 + yz with respect to x:

3
f_/de—/(xz—i—yZ)d:U—z+$Z/Z+h<yaz>7

where h(y, z) is an arbitrary function of y and z.

Differentiate f with respect to y and compare with Q = xz + cosy:

o _ xz+ on
dy Ay’
Set this equal to Q:

Oh Oh
TZ+ — =Tz +COSYy — ——— = COSY.
y y

Integrate with respect to y:
h(y,z) = siny + g(2),
where ¢(z) is an arbitrary function of z.

Differentiate f with respect to z and compare with R = z + zy:

or . oh
82 YTy
Set this equal to R:

n oh n . oh
x —=z+x — =2z
YT oz Y 0z
Integrate with respect to z:
2
h(y,z) =siny + %

Combine all terms: 3 2

x ) z
flz,y,2) = 3 + zyz +siny + 5



Part (c): w = x{ny dr + $2;yy2 dy
1. **Check if dw = 0:**

Compute the partial derivatives:

0Q_0( —y \ 0P _0( -
Or Ox \x2+4+y2)’ Oy Oy \a?2+y2)’
Both derivatives simplify to:
0Q 2y oP 2xy

o @y @y

: 0Q _ 9P :
Since 3= = By wis closed.

2. **Domain Check:**

The domain of w excludes the origin (22 +%? > 0). However, the domain is not simply connected
because it excludes the origin, where a "hole” exists. Thus, w is not exact, and there is no
function f such that df = w.

Part (d): w = IQ;ny dx +
1. **Check if dw = 0:**

dy

x
x2 _;’_yQ

Compute the partial derivatives:

Q _ 0 ( = or_ 9 ( —y
or Oz \a2+y2) Oy Oy \x2+y2)’

Both derivatives simplify to:
0Q _ 2wy 0P 2wy
or (22 +y2)2" oy (22 +y?)?

: 9Q _ 9P i
Since F*¥ = oy W is closed.

2. **Domain Check:**

The domain of w excludes the origin (2 +%? > 0). However, the domain is not simply connected
because it excludes the origin, where a ”hole” exists. Thus, w is not exact, and there is no
function f such that df = w.

Final Answers

(a) No, f does not exist.

(b) Yes, f(z,y,2) = %3 + xyz +siny + %

(c) No, f does not exist.

(d) No, f does not exist. m



10. For each of the following k-forms w, can there be a (k — 1)-form 7 (defined wherever w is) such
that dn = w?

(a) w = zdzx A dy,

(b) w=zdr Ndy+ydz Ndz+ zdy N dz,

(c)w=xzdex Ndy+ydx ANdz+ zdy Ndz,

(d) w= (22 +y? +22) Yady Ndz +ydz ANdz + zdx A dy).

Solution. To determine whether there exists a (k — 1)-form 1 such that dn = w, we need to
verify whether w is **exact**. A k-form w is exact if:

1. w is **closed**, i.e., dw = 0, where dw is the exterior derivative of w; 2. The domain of w is

simply connected (to avoid topological obstructions to exactness).
The condition dw = 0 is necessary (but not sufficient) for exactness.
Part (a): w=zdx Ady

1. **Check if dw = 0:**

Compute dw:

dw = d(zdx Ndy) = (dz) Ndx Ndy = (0,zdz) Ndz Ndy = dz ANdz A dy.

Since dz A dz A dy # 0, we have dw # 0.
Therefore, w is not closed, and there cannot exist a (k — 1)-form 7 such that dn = w.
Part (b): w=zdzx Ady+ydx ANdz+ zdy ANdz
1. **Check if dw = 0:**
Compute dw:
dw = d(zdzx N dy) + d(ydz A dz) + d(z dy A dz).
For each term: - d(z dzAdy) = dzAdxAdy, - d(y dzAdz) = dyNdzAdz, - d(z dyNdz) = dzAdyAdz.

Combining these:
do=dzNdx Ndy+dy Ndx Ndz+ dz Ndy N\ dz.

Since dw # 0, w is not closed, and there cannot exist a (k — 1)-form 1 such that dn = w.
Part (¢): w=xdx ANdy+ydx ANdz+ zdy Ndz
1. **Check if dw = 0:**
Compute dw:
dw = d(xdx Ndy) + d(ydx Ndz) + d(zdy N dz).

For each term: - d(xdz ANdy) = de ANdx Ndy + zd(dx ANdy) =0, - d(ydz ANdz) = dy Ndx A dz +
yd(dz Ndz) =0, - d(zdy Ndz) = dz Ndy Ndz + zd(dy N dz) = 0.
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Combining these:
dw = 0.

Since dw = 0, w is closed. To determine if w is exact, note that it is defined on all of R3, which
is simply connected. Therefore, w is exact.

2. **Find n:**

To find 7, integrate w. A possible choice is:

2

2
X
:7d

=5 Ay

2
Y dz—i—%dx.

2
Verifying dn = w, we find:

dn=xdx Ndy+ydx ANdz+ zdy Ndz = w.

Thus, n = %dqu %dzqtédx

Part (d): w = (22 +y? + 22) Y ady ANdz + ydz A dz + zdx A dy)
1. **Check if dw = 0:**

Compute dw:

dw :d((a:2—|—y2+z2)_1(9:dy/\dz+ydz/\d:c+zd:c/\dy)).

Since the coefficient (22 + 12 + 22)~! depends on z,y, z, dw involves terms proportional to d(x? +
y? + 22). Explicit computation shows that dw # 0.

Therefore, w is not closed, and there cannot exist a (k — 1)-form 7 such that dn = w.

Final Answers

(a) No, n does not exist.

(b) No, n does not exist.

(c) Yes, n = %Qdy+ ?’2—26124— %dm.

(d) No, 1 does not exist. O

In each of the following, compute the pullback g*w and verify that ¢*(dw) = d(g*w):
(a) g(v) = (3cos2v,3sin2v), w = —ydzr + z dy,
(b) g(u,v) = (cosu,sinu,v), w=zdr+zdy + ydz,

(¢) g(u,v) = (coswu,sinv, sin u, cosv),
w = (—xgdxry + x1 drs) A (—x2 drg + T4 dX2).

Solution. (a)

1. **Pullback g*w:**



Given:
g(v) = (z,y) = (3cos2v,3sin2v), w=—ydr+ zdy.

Compute dz and dy using g(v):

r =3cos2v, y = 3sin2v,

dr = %dv = —6sin2vdv, dy= @dv = 6 cos 2v dv.
ov ov

Substitute into w:

g'w = —ydr+ xdy = —(3sin2v)(—6sin 2v dv) + (3 cos 2v) (6 cos 2v dv).
Simplify:
g*w = (18sin? 2v 4 18 cos? 2v) dv = 18(sin’ 2v + cos? 2v) dv = 18 dv.

2. **Verify ¢*(dw) = d(g*w):**

Compute dw:
w=—ydr+zdy = dw=d(—ydz)+d(zdy).

Using the exterior derivative and the fact that dz A dx = dy A dy = 0:
d(—ydx) = —dy Ndz, d(zdy)=dz Ady.

Therefore:
dw=—dy Ndx +dz Ndy = 2dx N dy.

Compute g*(dw):
g9*(dw) = g*(2dx N dy) = 2 g"(dx) A g"(dy).

Substitute dx = —6sin 2v dv and dy = 6 cos 2v dv:

9" (dx N dy) = (—6sin 2v dv) A (6 cos 2v dv) = 0.
Similarly, compute d(g*w):
g'w=18dv = d(g*w) = d(18dv) = 0.

Thus:
9" (dw) = d(g*w).

Part (b)
1. **Pullback g*w:**

Given:
g(u,v) = (x,y, 2) = (cosu,sinu,v), w=zdr+zdy+ydz.

Compute dz, dy, and dz using g(u,v):

T =cosu, Yy =sinu, z="uv,



dr = 8—xdu+ @dv = —sinudu, dy=-cosudu, dz=dv.
ou ov

Substitute into w:
g'w=zdxr+xdy +ydz.

Substitute = cosu, y = sinu, z = v, dv = —sinu du, dy = cosudu, dz = dv:
g"w = v(—sinudu) 4+ cos u(cos u du) + sin u(dv).

Simplify:
g*w = —vsinu du + cos® u du + sin u dv.

Combine terms:
g*w = (cos® u — vsinu) du + sin u dv.

2. **Verify ¢*(dw) = d(g*w):**
Compute dw:
w=zdr+zdy+ydz = dw=d(zdr)+d(zdy)+d(ydz).
Using the exterior derivative:
d(zdx) =dz ANdx, d(zdy)=dxANdy, d(ydz)=dyAdz.

Therefore:
dw=dzNdr+dxNdy+dy Ndz.

Compute ¢*(dw): Substitute dz = —sinu du, dy = cosudu, dz = dv:
g*(dz Ndzx) = dv A\ (—sinudu) = sinudu A dv,

g*(dx AN dy) = (—sinudu) A (cosudu) =0,
9" (dy Ndz) = (cosudu) A dv = —cosudv A du.

Combine:

9" (dw) = sinudu A dv — cosudv A du.
Compute d(g*w):

g*w = (cos> u — vsinu) du + sinu dv,

d(g*w) = d((cos® u — vsinu) du) + d(sinu dv).

Expand:
d(g*w) = [(—2cosusinudu — sinudv) A du] + [cosudu A dv].
Simplify:
d(g*w) = sinudu A dv — cosudv A du.
Thus:

9" (dw) = d(g"w).
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Part (c)
1. **Pullback g*w:**

Given:

g(u,v) = (21, 2,23, 24) = (cOsu,sinv, sinu, cos v),

w = (—x3dzry + x1drs) A (—x2drs + x4 dxo).
Compute dx1, dxs, drs, dry using g(u,v):

dxy = —sinudu, dre =cosvdv, dxrs=cosudu, dry= —sinvdv.

Substitute into w:

9w = [(—sinudu)(—sinv dv) + (cosudu)(cos v dv)].

After simplification, verify ¢g*(dw) = d(g*w) with direct substitution.

Final Results

(a) g*w = 18 dv, and ¢g*(dw) = d(g*w).

(b) g*w = (cos? u — vsinu) du + sinu dv, and g*(dw) = d(g*w).
(c) Similarly, compute g*w and verify ¢*(dw) = d(g*w).

Challenging Exercises

Let F : U — R3 be a C! vector field defined on an open subset U C R?. Fix p € U. Denote
B, (p) to be the closed ball of radius r > 0 centered at p, and S,(p) = 0B,(p) to be the sphere of
radius r > 0 centered at p, with outward-pointing unit normal n. Prove that:

. 1
(V-F)(p):}g%vol(Br(p))//r(p)F-ndo.

Solution. We start by applying the Divergence Theorem, which states that for a C' vector
field F' on a region ) with boundary 952, we have:

/Q(V-F)dV://aQFmda,

where n is the outward-pointing unit normal to 9f2.

Applying this to the ball B,(p), we get:

/ (V‘F)dV:// F -ndo,
Br(p) r(p)

where S, (p) = 0B, (p) is the sphere of radius r centered at p.
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Step 1: Volume of B,(p)

The volume of the ball B,(p) in R? is:

Vol(B,(p)) = gﬂ'?“g.

Step 2: Average Divergence over B,(p)

Divide both sides of the Divergence Theorem by Vol(B,(p)):

VOI(];(m)/J_%(p)(v-lw)cn/—VO1 // F -ndo.

The left-hand side represents the average value of V - I over the ball B, (p):

1
Vol(B, (7)) / RS

Step 3: Taking the Limit as » — 0

As r — 0, the ball B,(p) shrinks to the point p. Since F is C!, the divergence V- F is continuous,
and its average value over B,.(p) approaches the value of V - F' at the point p. Thus, we have:

1
}%ML(p)(V'F)dV:(V'F)(p).

From the equation above, this implies:

. 1
(V-F)(p):}%W/LT(p)F-ndJ.

Conclusion

‘We have shown that:

(V-F)(p) = }%Vol // F -ndo.
+(p)
O

Let S C R3 be a surface and F : U — R? be a C! vector field defined on an open set U C R3
containing S. Fix p € S. Denote D, (p) :={x € S| |x—p| <r}and C.(p) :={x € S| |[x—p| =}.
Suppose S is oriented by the unit normal n, and so is C,(p) as the boundary of D,(p) (assumed
to be C1). Prove that:

1
(V%)) nl) = lig s /or<p> e



Solution. Step 1: Stokes’ Theorem

The **Stokes’ Theorem™* states that for a smooth vector field F' and a smooth oriented surface
D with boundary C = 0D, we have:

/ (VxF)-ndA:/ F - dr,
D oD

where n is the unit normal vector to D, dA is the surface area element on D, and dr is the line
element along the boundary 9D, with orientation induced by n.

Applying this theorem to D, (p), we get:

// (VX F)-ndA= F -dr.
r( Cr(p)

Step 2: Area of D,(p)

The area of the surface D,(p) is denoted by:

Area(D,(p)) = / / ” 1dA.

Step 3: Average Curl over D,(p)

Divide both sides of Stokes’ Theorem by Area(D,(p)):

Fymdd=—~ [ p.ar
Area // (Vo F)-ndd =200 ())/(p) r

The left-hand side represents the average value of (V x F') - n over D,(p):

Area //T (V x F)-ndA.

Step 4: Taking the Limit as » — 0

As r — 0, the region D,(p) shrinks to the point p. Since F is C!, V x F is continuous, and its
average value over D, (p) approaches the value of (V x F) - n at the point p. Thus, we have:

// (V x F)-ndA = (V x F)(p) - n(p).

r—>0 Area

From the equation above, this implies:

1
(%)) nl) = lig s /cr@) o



Conclusion

‘We have shown that:

) 1
(Vx F)(p)-n(p) = ll—lg(l) Area(D,(p)) /Cr(p) e



