LECTURE 22

ZIQUAN YANG

The exterior derivative d is a fundamental operator in differential geometry that generalizes the con-
cept of differentiation to differential forms. For a k-form @, the exterior derivative d® yields a (k+ 1)-
form, encoding infinitesimal variations of @ in all directions. It satisfies the key properties of linearity,
the graded Leibniz rule d(w AN) = d® AN + (—1)%8°w® A dn. Moreover, we set d(dx;) = d*x; = 0 for
each i.

Proposition 1. If o is a differential k-form whose components have continously differentiable deriva-
tives, then d>® = 0.

Proof. For a function f: Q — R which is smooth or at least has continuous second derivative, the exterior
derivative df is given by:

Z” of 1
df = = ﬁdx .
Applying d again yields:
_ Z" of . _Z" of ,-_Z" Pf i i
d(df) =d (i_l axldx> == i:1d <axl> ANdx' = =, axjaxidx Adx'.

Since mixed partial derivatives commute

°f B °f
Oxidxi  Oxidx/

and dx/ Adx' = —dx' Adx/, the terms pair up as:

af i O 9% f 9*f o

Ixignt 5 N g N (8)6] ox' Jx'dx/ > v
Thus, d” f = 0. For higher-degree forms, the result follows from the graded Leibniz rule and the fact that
d? vanishes on functions. ]

Next, we shall explain that Green’s theorem, Stokes’ theorem (in terms of curl), and divergence theo-
rem all follow from the generalized Stokes’ theorem.

Theorem 2 (Generalized Stokes’ Theorem). Let M be a smooth, oriented n-dimensional manifold with
boundary in R", and let M denote its boundary with the induced orientation. If ® is a continuously
differentiable (n — 1)-form with compact support on M, then

/dw:/ ,
M oM

Let me not explain what the general notion of a submanifold is. You only need to know that the curves
are 1-dimensional submanifolds, surfaces are 2-dimensional submanifolds, and so on so forth.
To begin, let us look at Green’s theorem.

where dw is the exterior derivative of ®.

Example 3. Let ® be a 1-form on a region R C R? given by:
Ow=Mdx+Ndy,

where M, N are smooth functions on R. The exterior derivative d @ is computed as:

oM oM JdN JdN
dow=dMANdx+dN Ndy = (adx—i— ady> ANdx+ (adx+ ady> Ady.
X y X y

Date: April 16, 2025.



2 ZIQUAN YANG

Using the antisymmetry dx Adx = dy Ady = 0 and dy A dx = —dx A dy, this simplifies to:

do = a—Ma’y/\dx—i— a—Na’x/\dy = a—N — a—M dxA\dy.
dy dx dx dy

Therefore, Green’s theorem can be understood as the equation

/(9Rw:7,{9R(de+Ndy)://1e <%I;]—?;)dA:/Rdw.

Before moving on the Stokes and divergence theorems, we need a proposition which explains the flux
of a vector field through a surface in terms of integration of a certain 2-form.

Proposition 4. Let r : R — R3 be a parametrized surface S, and let F = Mi+ Nj+ Pk be a vector field
defined on an open region containing S. Suppose that S is oriented by the unit vector field

ry XTIy
[, x|

Set @ to be the 2-form
(1 ® = MdyNdz— Ndx Ndz+ Pdx Ady.

Then
/SF-ndG:/Sa).
/Sw:/Rr*(w).

We compute the pullback r*(®) using the parametrization r(u,v) = (x(u,v),y(u,v),z(u,v)). The differ-
entials become:

Proof. Recall that by definition

dx = x,du+ x,dv
dy =y, du+y,dv
dz = z,du+ z,dv
Substituting these into @ and expanding, we get:
r' (o) = M(y,du+y,dv) A (zydu+ z,dv) — N (x,du+ x,dv) A (zydu+ z,dv) + P(x,du+ x,dv) A (yudu + y,dv)
=M (yuzy — yvzu)du Adv — N (x,2y — %2, )du A dv + P(x,y, — x,y, )du A dv

2(v,z) ,9(x2)  ,d(xy)
) Vo) T o)

where the Jacobian determinants appear as coefficients.

=M }du/\dv

Notice that
_(9(nz)  d(xz) d(x,y)
Fu X Ty = <8(u,v)7 a(u,v) d(u,v) /)"
Therefore,
2z d(x2) (x,¥)
B o) =M N o) TP o)
and thus

/w:/F-(ruxrv)dudV
s R
:/F-nHruxrdeudV
R

:/F'ndc
S

which completes the proof. ]
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Example 5. Let @ be a 2-form on a region R C R? with coordinates (x,y,z), given by:
O=MdyNdz+NdzNdx+PdxN\dy,
where M, N, P are smooth functions on R. The exterior derivative d® is computed as:
do =dM NdyNdz+dN NdzANdx+dP Ndx \dy.

Expanding each term using
dM = aa]\;[dx—k aa]:[dy—k a&tldz
(and similarly for dN,dP) and simplifying via the wedge product’s antisymmetry (e.g., dx Adx = 0,
dyANdzANdy =0, etc.), we obtain:
Jo — (8M . 8N JdP
dx 8y dz

By Stokes’ Theorem (general form), we have:

/ /da) / 8—M 87N+87 dxNdyNdz.
dy 0z

Rewriting in classical notation (where dx A dy A\ dz corresponds to the volume element dV and @ corre-
sponds to the flux form F-ndo for F = (M, N, P)), we recover the Divergence Theorem:

/aRF-ndG:///R(V-F)dV.

Thus, the Divergence Theorem is the special case of Stokes’ Theorem applied to a 2-form in R.

)dx/\dy/\dz

Example 6. Finally, let us recover the classical Stokes’ theorem in terms of curl. Let S C R3 be a smooth
surface with smooth closed boundary curve dS. Let F = Mi+ Nj + Pk be a continuously differentiable
vector field defined on an open region containing S. This time, we attach to F the 1-form
® = Mdx+Ndy+ Pdz.
At this point, you should have no difficulty computing
P JN oM JP ON oM
do=|—=——=|dyANdz— | =— —=— |dxAd — — —— | dxAdy.
(8y 8z)y ¢ <3z 8) Z+<8x 8y>x Y
Applying the generalized Stokes’ theorem to @ gives:

/dw:/ 0,
S as

/(VxF)-ndG: F.dr,
S as

where n is the unit normal to S and dr is the line element along dS, as desired.

which by Proposition 4 translates to



