
LECTURE 22

ZIQUAN YANG

The exterior derivative d is a fundamental operator in differential geometry that generalizes the con-
cept of differentiation to differential forms. For a k-form ω , the exterior derivative dω yields a (k+1)-
form, encoding infinitesimal variations of ω in all directions. It satisfies the key properties of linearity,
the graded Leibniz rule d(ω ∧η) = dω ∧η +(−1)degωω ∧dη . Moreover, we set d(dxi) = d2xi = 0 for
each i.

Proposition 1. If ω is a differential k-form whose components have continously differentiable deriva-
tives, then d2ω = 0.

Proof. For a function f : Ω→R which is smooth or at least has continuous second derivative, the exterior
derivative d f is given by:

d f =
n

∑
i=1

∂ f
∂xi dxi.

Applying d again yields:

d(d f ) = d

(
n

∑
i=1

∂ f
∂xi dxi

)
=

n

∑
i=1

d
(

∂ f
∂xi

)
∧dxi =

n

∑
i, j=1

∂ 2 f
∂x j∂xi dx j ∧dxi.

Since mixed partial derivatives commute

∂ 2 f
∂x j∂xi =

∂ 2 f
∂xi∂x j

and dx j ∧dxi =−dxi ∧dx j, the terms pair up as:

∂ 2 f
∂x j∂xi dx j ∧dxi +

∂ 2 f
∂xi∂x j dxi ∧dx j =

(
∂ 2 f

∂x j∂xi −
∂ 2 f

∂xi∂x j

)
dx j ∧dxi = 0.

Thus, d2 f = 0. For higher-degree forms, the result follows from the graded Leibniz rule and the fact that
d2 vanishes on functions. □

Next, we shall explain that Green’s theorem, Stokes’ theorem (in terms of curl), and divergence theo-
rem all follow from the generalized Stokes’ theorem.

Theorem 2 (Generalized Stokes’ Theorem). Let M be a smooth, oriented n-dimensional manifold with
boundary in Rn, and let ∂M denote its boundary with the induced orientation. If ω is a continuously
differentiable (n−1)-form with compact support on M, then∫

M
dω =

∫
∂M

ω,

where dω is the exterior derivative of ω .

Let me not explain what the general notion of a submanifold is. You only need to know that the curves
are 1-dimensional submanifolds, surfaces are 2-dimensional submanifolds, and so on so forth.

To begin, let us look at Green’s theorem.

Example 3. Let ω be a 1-form on a region R ⊂ R2 given by:

ω = M dx+N dy,

where M,N are smooth functions on R. The exterior derivative dω is computed as:

dω = dM∧dx+dN ∧dy =
(

∂M
∂x

dx+
∂M
∂y

dy
)
∧dx+

(
∂N
∂x

dx+
∂N
∂y

dy
)
∧dy.
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Using the antisymmetry dx∧dx = dy∧dy = 0 and dy∧dx =−dx∧dy, this simplifies to:

dω =
∂M
∂y

dy∧dx+
∂N
∂x

dx∧dy =
(

∂N
∂x

− ∂M
∂y

)
dx∧dy.

Therefore, Green’s theorem can be understood as the equation∫
∂R

ω =
∮

∂R
(M dx+N dy) =

∫∫
R

(
∂N
∂x

− ∂M
∂y

)
dA =

∫
R

dω.

Before moving on the Stokes and divergence theorems, we need a proposition which explains the flux
of a vector field through a surface in terms of integration of a certain 2-form.

Proposition 4. Let r : R → R3 be a parametrized surface S, and let F = Mi+Nj+Pk be a vector field
defined on an open region containing S. Suppose that S is oriented by the unit vector field

n =
ru × rv

∥ru × rv∥
.

Set ω to be the 2-form

(1) ω = Mdy∧dz−Ndx∧dz+Pdx∧dy.

Then ∫
S

F ·ndσ =
∫

S
ω.

Proof. Recall that by definition ∫
S

ω =
∫

R
r∗(ω).

We compute the pullback r∗(ω) using the parametrization r(u,v) = (x(u,v),y(u,v),z(u,v)). The differ-
entials become:

dx = xudu+ xvdv
dy = yudu+ yvdv
dz = zudu+ zvdv

Substituting these into ω and expanding, we get:

r∗(ω) = M(yudu+ yvdv)∧ (zudu+ zvdv)−N(xudu+ xvdv)∧ (zudu+ zvdv)+P(xudu+ xvdv)∧ (yudu+ yvdv)

= M(yuzv − yvzu)du∧dv−N(xuzv − xvzu)du∧dv+P(xuyv − xvyu)du∧dv

=

[
M

∂ (y,z)
∂ (u,v)

−N
∂ (x,z)
∂ (u,v)

+P
∂ (x,y)
∂ (u,v)

]
du∧dv

where the Jacobian determinants appear as coefficients.
Notice that

ru × rv =

(
∂ (y,z)
∂ (u,v)

,− ∂ (x,z)
∂ (u,v)

,
∂ (x,y)
∂ (u,v)

)
.

Therefore,

F · (ru × rv) = M
∂ (y,z)
∂ (u,v)

−N
∂ (x,z)
∂ (u,v)

+P
∂ (x,y)
∂ (u,v)

and thus ∫
S

ω =
∫

R
F · (ru × rv)dudv

=
∫

R
F ·n∥ru × rv∥dudv

=
∫

S
F ·ndσ

which completes the proof. □
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Example 5. Let ω be a 2-form on a region R ⊂ R3 with coordinates (x,y,z), given by:

ω = M dy∧dz+N dz∧dx+Pdx∧dy,

where M,N,P are smooth functions on R. The exterior derivative dω is computed as:

dω = dM∧dy∧dz+dN ∧dz∧dx+dP∧dx∧dy.

Expanding each term using

dM =
∂M
∂x

dx+
∂M
∂y

dy+
∂M
∂ z

dz

(and similarly for dN,dP) and simplifying via the wedge product’s antisymmetry (e.g., dx∧ dx = 0,
dy∧dz∧dy = 0, etc.), we obtain:

dω =

(
∂M
∂x

+
∂N
∂y

+
∂P
∂ z

)
dx∧dy∧dz.

By Stokes’ Theorem (general form), we have:∫
∂R

ω =
∫

R
dω =

∫
R

(
∂M
∂x

+
∂N
∂y

+
∂P
∂ z

)
dx∧dy∧dz.

Rewriting in classical notation (where dx∧dy∧dz corresponds to the volume element dV and ω corre-
sponds to the flux form F ·ndσ for F = (M,N,P)), we recover the Divergence Theorem:∫∫

∂R
F ·ndσ =

∫∫∫
R
(∇ ·F)dV.

Thus, the Divergence Theorem is the special case of Stokes’ Theorem applied to a 2-form in R3.

Example 6. Finally, let us recover the classical Stokes’ theorem in terms of curl. Let S ⊆R3 be a smooth
surface with smooth closed boundary curve ∂S. Let F = Mi+Nj+Pk be a continuously differentiable
vector field defined on an open region containing S. This time, we attach to F the 1-form

ω = Mdx+Ndy+Pdz.

At this point, you should have no difficulty computing

dω =

(
∂P
∂y

− ∂N
∂ z

)
dy∧dz−

(
∂M
∂ z

− ∂P
∂x

)
dx∧dz+

(
∂N
∂x

− ∂M
∂y

)
dx∧dy.

Applying the generalized Stokes’ theorem to ω gives:∫
S

dω =
∫

∂S
ω,

which by Proposition 4 translates to ∫
S
(∇×F) ·ndσ =

∮
∂S

F ·dr,

where n is the unit normal to S and dr is the line element along ∂S, as desired.


