
LECTURE 21

ZIQUAN YANG

Example 1. Given the vector field

F =
1

ρ3 (xi+ yj+ zk) where ρ =
√

x2 + y2 + z2,

we compute the net outward flux across the sphere ρ = a.
The outward normal vector field is given by

n =
xi+ yj+ zk

ρ
.

Therefore,

F ·n =
x2 + y2 + z2

ρ4 =
ρ2

ρ4 =
1

ρ2 =
1
a2

Flux =
∫∫

ρ=a
F ·ndσ =

1
a2 ·4πR2 = 4π.

Note that the answer is independent of a. From this you quickly infer that the outward flux through
the sphere ρ = b for any b > a is also 4π , and the outward flux through the region Ω given by a ≤ ρ ≤ b
is 4π −4π = 0. Note that when the sphere ρ = a is viewed as the inner boundary of Ω, its normal vector
field should be pointing inward, not outward as before, because now you are observing from inside of Ω,
hence the minus sign as in 4π −4π .

On the other hand, we can also understand this in terms of the divergence theorem. A quick calculation
shows that the divergence ∇ ·F is 0 on R3∖{(0,0,0)}, which in particular contains Ω. Therefore, by the
divergence theorem we also get that the outward flux of F is 0. Note however that F is not defined at the
origin, so that you cannot apply divergence theorem to conclude that the outward flux through the sphere
ρ = a (which indeed contains the origin) is also 0.

Example 2. The electric flux through any closed surface ∂Ω is proportional to the total charge Qenc
enclosed within the surface:

(1)
∫∫

∂Ω

E ·dA =
Qenc

ε0

where:
• E is the electric field vector
• dA is the differential area element vector (pointing outward normal to the surface)
• Qenc is the total charge enclosed within the volume Ω

• ε0 is the vacuum permittivity
Let us consider the case when we have point charges. The Coulomb’s law tells us that

(2) E =
1

4πε0

q
r2 r

where r(x,y,z) = xi+ yj+ zk.
Suppose that we have an arbitrary closed surface enclosing the point charge. Then we can always

draw a small ball B around the charge which is enclosed by the surface. Then it is not hard to check (1)
for B. Now we notice that ∇F = 0 away from the charge. In particular, the divergence is zero for the
region outside of B but inside of Ω. Therefore, the surface integral does not change when we replace B
by Ω.
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The content below will not appear on your final, but I think it is something very helpful to know before
you leave the course.

Let x1, · · · ,xn be a coordinate system on Rn and let Ω ⊆ Rn be an open region. A differential 1-form
α is a linear combination of the form

n

∑
i=1

fidxi, where fi : Ω → R is a function.

We say that α is smooth or continuously differentiable if each component fi has this property.
Given two 1-forms α = ∑

n
i=1 fidxi and β = ∑

n
i=1 gidxi, we define the wedge product by

α ∧β =
n

∑
i, j=1

fig jdxi ∧dx j

subject to the rules that dxi ∧dx j =−dx j ∧dxi, in particular, dxi ∧dxi = 0 for every i.
A 2-form is a linear combination of the wedge products of two 1-forms. More precisely, a 2-form ω

looks like
∑

1≤i< j≤n
fi, jdxi ∧dx j, where fi, j : Ω → R is a function.

Similarly, a 3-form looks like
∑

1≤i< j<k≤n
fi, j,kdxi ∧dx j ∧dxk,

and so on so forth. The wedge product of forms is defined as extending the rule dxi ∧dx j =−dx j ∧dxi
in the obvious way.

Wedge products of forms are associative, which means that if α,β ,γ are forms, then

(α ∧β )∧ γ = α ∧ (β ∧ γ).

Now, let us multiply a 1-form with a 2-form

(xdx+ xydy)∧ (ex dx∧dy+ sin(z)dx∧dz)

= xdx∧ ex dx∧dy+ xdx∧ sin(z)dx∧dz

+ xydy∧ ex dx∧dy+ xydy∧ sin(z)dx∧dz

= xex dx∧dx∧dy+ xsin(z)dx∧dx∧dz

+ xyex dy∧dx∧dy+ xysin(z)dy∧dx∧dz

=−xysin(z)dx∧dy∧dz

Whenever you see terms like dx∧dx, you set it to 0. For example, dy∧dx∧dy =−dx∧dy∧dy = 0.
A fundamental operation you can do to a differential form is “pullback”. Instead of giving you the

most formal definition, let me illustrate how to compute this in practice. Suppose that you have a function
r : R → Ω for some open R ⊆ Rm. Say the coodinates of Rm are given by y1, · · · ,ym, and r is given by

(y1, · · · ,ym) 7→ ( f1(y1, · · · ,ym), · · · , fn(y1, · · · , fm)),

then for any function g : Ω → R, the pullback r∗(g) of g is just the composition g ◦ r, and the pullback
r∗(dxi) of dxi is just

d fi =
m

∑
j=1

∂ fi

∂y j
dy j.

Example 3. Let r : R2 → R3 be a smooth surface given by:

r(u,v) = (x(u,v),y(u,v),z(u,v)) = (uv,u+ v,sinu).

Let ω be a differential 1-form on Ω:
ω = ydx+ xdy+dz.

To pullback ω , you first compute the differentials.

dx =
∂x
∂u

du+
∂x
∂v

dv = vdu+udv,

dy =
∂y
∂u

du+
∂y
∂v

dv = du+dv,
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dz =
∂ z
∂u

du+
∂ z
∂v

dv = cosudu.

Then, substitute into ω .

r∗ω = (u+ v)(vdu+udv)+uv(du+dv)+ cosudu = r∗ω = (2uv+ v2 + cosu)du+(u2 +2uv)dv.

Roughly speaking, a 1-form is an object that can be naturally integrated over a curve, a 2-form over
a surface, and so on for higher-dimensional forms. The base case is that, if (x1, · · · ,xn) is a coordinate
system on Rn, then for any region Ω ⊆ Rn, we shall define∫

Ω

f (x1, · · · ,xn)dx1 ∧dx2 ∧·· ·∧dxn =
∫

Ω

f .

By the very nature of wedge products and pullback, the integration of differential forms is independent
of the choice of coordinates (up to orientation). For example, suppose that we have open regions R and
R′ with coordinates (u,v) and (x,y) respectively, and there is a 2-form ω = f (x,y)dx∧dy. Then for any
bijection g : (u,y) 7→ (x,y) which is continuously differentiable with its inverse, we have∫

R
g∗ω =±

∫
R′

ω.

depending on whether g preserves orientation or not. To see why this recovers the change of variable
formula for integrals in terms of Jacobians, we compute.

Roughly speaking, differential forms are objects designed for integration over manifolds in a coordinate-
independent way. Specifically:

• A 1-form can be naturally integrated over a curve,
• A 2-form over a surface,
• And more generally, a k-form over a k-dimensional manifold.

The Base Case: Integration on Rn. Let (x1, . . . ,xn) be a coordinate system on Rn, and let Ω ⊆ Rn be a
region. The integral of a smooth function f weighted by the canonical volume form is defined as:∫

Ω

f (x1, . . . ,xn)dx1 ∧dx2 ∧·· ·∧dxn :=
∫

Ω

f dV,

where dV is the standard volume element. This aligns with classical integration when Ω is oriented
positively.

Coordinate Independence and Pullbacks. A key property of differential forms is that their integrals
are coordinate-independent (up to orientation), thanks to the antisymmetry of the wedge product and the
behavior of pullbacks.

Example 4. Consider open regions R ⊂ R2 with coordinates (u,v) and R′ ⊂ R2 with coordinates (x,y).
Let ω = f (x,y)dx∧dy be a 2-form on R′, and let g : R → R′ be a diffeomorphism (i.e., a bijection that is
continuously differentiable with its inverse). The pullback of ω under g satisfies:∫

R
g∗ω =±

∫
R′

ω,

where the sign depends on whether g preserves (+) or reverses (−) orientation.
This recovers the classical change of variables formula. Explicitly, if g(u,v) = (x(u,v),y(u,v)), then:

g∗ω = f (x(u,v),y(u,v))
(

∂ (x,y)
∂ (u,v)

)
du∧dv,

where ∂ (x,y)
∂ (u,v) is the Jacobian determinant. Thus:∫

R′
f (x,y)dx∧dy =±

∫
R

f (x(u,v),y(u,v))
∣∣∣∣∂ (x,y)
∂ (u,v)

∣∣∣∣du∧dv,

matching the standard transformation rule for integrals. The sign is positive if the transformation g sends
a counterclockwise circle to a counterclockwise circle, and negative otherwise.
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