
LECTURE 16

ZIQUAN YANG

1. GREEN’S THEOREM CONTINUED

Recall that in a simply connected region Ω, a vector field F(x,y) = M(x,y)i+N(x,y)j is conservative
if and only if its components satisfy:

(1)
∂N
∂x

=
∂M
∂y

.

Now this is easy to understand using Green’s theorem. Indeed, Ω being simply connected implies that
for any oriented closed curve C inside Ω, the region enclosed by C inside R2 completely lies in Ω. The
fact roughly says that if a vector field does not have infinitesimal circulation everywhere, then it does not
have circulation along any closed curve. Now think about our favorite counterexample when the simply
connectedness assumption is dropped:

(2) F =
−y

x2 + y2 i+
x

x2 + y2 j.

Obviously, you wouldn’t think of the vector field as having “no circulation” if you think about what it
looks like. However, it does satisfy equation (1). If you draw small circles which do not enclose the
origin, then the circulation is zero. However, if you draw any circle centered at the origin, then the
circulation you get is a constant, 2π .

Why is the situation for the vector field

(3) F =−yi+ xj

different? This vector field has the same general shape, but the vectors are getting shorter and shorter
towards the origin. The smaller the circle you draw, the smaller the circulation you get. This is not the
case with (2). No matter how small the circle you draw (around the origin), the circulation is 2π , so for
(2) the circulation density is infinite at the origin. In general, the circulation density of a vector field is
the difference

∂N
∂x

− ∂M
∂y

.

Let us denote it by curl(F), because later you see that it is the special case of a more general notion of
“curl” of a vector field.

Similarly, the flux density is defined to be

∂M
∂x

+
∂N
∂y

.

It is also called the divergence.
Let us remark that it is not the case that you cannot use Green’s theorem to analyze the vector field in

(2). Let C be any simple closed curve enclosing the origin, say with counterclockwise orientation. Then
you can draw a small circle C′ around the origin also with counterclockwise orientation, such that C′ is
enclosed by C. Then Green’s theorem implies that for (2)

(4)
∮

C
Fdr =

∮
C′

Fdr,

because F is defined on region D between C and C′. You can divide D into simply connected regions,
and the integrals of F along boundaries not on C or −C′ will cancel out. Note that the integral on the left
hand side of (4) might a priori be very hard to evaluate directly because C might be completely random.
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2. SURFACES

Let us now turn to calculus on a surface. Just like a curve in Rn is given by a function r : [a,b]→ Rn

for some interval [a,b]⊆R, a surface is given by r : Ω →Rn for some region Ω in R2. In this course, we
mostly look at surfaces in R3.

Definition 1. Suppose that Ω is open and let u,v be parameters on Ω. We say that the parametrized
surface r(u,v) is smooth (following the terminology of textbook) if both ru and rv are continuous and
ru × rv is everywhere nonzero, or equivalently, the tangent vectors ru and rv are never colinear. If Ω is
closed, then we extend this definition by restricting to the interior of Ω.

Let us consider the surface area of a parametrized surface r : Ω → R3. For simplicity, let us assume
that Ω is rectangular and take a partition P of Ω into sub rectangular regions. Let R ∈ P and suppose that
its sides are given by ∆u and ∆v. Let (uR,uR) be the left bottom corner on R. When R is small, r is close
to being a linear transformation near (uR,vR), i.e.,

r(
[

u−uR
v− vR

]
)≈

xu xv
yu yv
zu zv

[
u−uR
v− vR

]
.

Therefore, r(R) is roughly the rectangle whose sides arexu xv
yu yv
zu zv

[
∆u
0

]
=

xu
yu
zu

∆u = ru∆u and

xu xv
yu yv
zu zv

[
0

∆v

]
=

xv
yv
zv

∆v = rv∆v.

The area of this rectangle is computed by

∥ru × rv∥∆u∆v.

Therefore, the surface area is computed by∫∫
Ω

∥ru × rv∥dudv.

Example 2. To compute the surface area of a hemisphere of radius 1, we use the parametrization:

r(u,v) = (sinucosv,sinusinv,cosu)
where u ∈ [0,π/2] and v ∈ [0,2π].

The partial derivatives are:
ru = (cosucosv,cosusinv,−sinu)

rv = (−sinusinv,sinucosv,0)
The cross product ru × rv is:

ru × rv =
(
sin2 ucosv,sin2 usinv,sinucosu

)
The magnitude of the cross product is:

∥ru × rv∥= sinu
The surface area A is then:

A =
∫∫

∥ru × rv∥dudv =
∫ 2π

0

∫
π/2

0
sinududv = 2π

You are easily figure out that the surface area of a sphere of radius r is 4πr2.

Example 3. To compute the surface area of a cone (excluding the bottom) with bottom radius r and
height h, we use the parametrization:

r(u,v) =
(ru

h
cosv,

ru
h

sinv,u
)

where u ∈ [0,h] and v ∈ [0,2π].The partial derivatives are:

ru =
( r

h
cosv,

r
h

sinv,1
)
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rv =
(
−ru

h
sinv,

ru
h

cosv,0
)

The cross product ru × rv is:

ru × rv =

(
−ru

h
cosv,−ru

h
sinv,

r2u
h2

)
The magnitude of the cross product is:

∥ru × rv∥=
ru
h

√
1+

r2

h2

The surface area A is:

A =
∫∫

∥ru × rv∥dudv =
∫ 2π

0

∫ h

0

ru
h

√
1+

r2

h2 dudv

Evaluating the integrals:
A = πr

√
h2 + r2

Thus, the surface area of the cone (excluding the bottom) is πr
√

h2 + r2. On the other hand, you can
verify this formula by flatten the cone to a circular sector (exercise).

Suppose now a surface S is given implicitly as the vanishing set of a function F(x,y,z). Let us find
the area of S lying above a region Ω on the xy-plane. Assume that h(x,y) is some function such that
F(x,y,h(x,y)) = 0. Then we may parametrize the surface as

r(u,v) = ui+ vj+h(u,v)k.

To compute ru, we need to know what hu is. From

∂

∂u
F(u,v,h(u,v)) = (∇F)(u,v,h(u,v)) · (1,0,hu) = Fx(u,v,h(u,v))+huFz(u,v,h(u,v)) = 0

we observe that
hu =−Fx

Fz
(u,v,h(u,v)).

Similarly, we find hv. This way we find

ru = i− Fx

Fz
k and rv = j−

Fy

Fz
k

so that

∥ru × rv∥=
∥∇F∥
|Fz|

.

Example 4. Let us ind the area of the surface cut from the paraboloid x2 +y2 − z = 0 by the plane z = 4.
For the paraboloid F(x,y,z) = x2 + y2 − z = 0, the gradient is:

∇F = (2x,2y,−1)
The magnitude of the gradient is:

∥∇F∥=
√

4x2 +4y2 +1
Since Fz =−1, the surface area formula becomes:

A =
∫∫

Ω

√
4x2 +4y2 +1dxdy

The region Ω is a disk of radius 2 in the xy-plane. Switching to polar coordinates:

A =
∫ 2π

0

∫ 2

0
r
√

4r2 +1dr dθ

Evaluating the inner integral: ∫ 2

0
r
√

4r2 +1dr =
1
12

(
17
√

17−1
)
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Thus, the surface area is:

A =
π

6

(
17
√

17−1
)
.

As a special case, we know that if a surface is given by z = f (x,y) over a region Ω on the xy-plane,
then the surface area formula is given by∫∫

Ω

√
f 2
x + f 2

y +1dxdy.
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