
LECTURE 12

ZIQUAN YANG

Let me switch to using r instead of γ like your textbook because the boldface γ in Latex does not look
very different.

In general, line integral of a function depends on the path, not just on the starting point and the ending
point. For example, consider the function f (x,y,z) = x−3y2+ z. Let C1 be the straight line from (0,0,0)
to (1,1,1), C2 be that from (0,0,0) to (1,1,0), and C3 be that (1,1,0) to (1,1,1). Then we can check
that ∫

C1

f = 0, but
∫

C2∪C3

f =
∫

C2

f +
∫

C3

f =−
√

2
2

− 3
2
.

Next, we move on to talk about integration of a vector field along a curve. First, let Ω ⊆ Rn be a
region (we normally consider n = 2,3). Then a vector field F on Ω is what associates to each point
x ∈ Ω a vector in Rn.1 Therefore, in practice F is given by a function Ω → Rn. In R2, we often write F
componentwise as

F(x,y) = M(x,y)i+N(x,y)j
for suitable functions M,N : Ω → R. Similarly, in R3, we will add a component

F(x,y,z) = M(x,y,z)i+N(x,y,z)j+L(x,y,z)k.

Below is an example of a vector field.
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Vector Field F(x,y) =−yi+ xj

When observing the vector field, you can see that it appears to rotate around the origin. This rotational
behavior arises because, at each point (x,y) ∈R2, the vector −yi+xj is orthogonal to the position vector
xi+ yj. Additionally, the length of the vector F(x,y) increases with distance from the origin. Indeed, the
length of F(x,y) is given by

√
x2 + y2, meaning that vectors farther from the origin are longer.

When Ω is open, and f : Ω →R is a function, we can always associate a gradient vector field ∇ f . For
general Rn with coordinates x1, · · · ,xn, the formula is given by

∇ f = (
∂ f
∂x1

, · · · , ∂ f
∂xn

).

Date: March 1, 2025.
1Technically, this latter Rn should be thought of as the tangent space of the ambient Rn at x.
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For example, suppose that f (x,y,z) = x2y+ z, then

∇ f = 2xyi+ x2j+k.

Suppose now that r : [a,b]→ Rn is a curve. We define the integration of F along C by

(1)
∫

C
F ·dr =

∫ b

a
F(r(t)) · r′(t)dt.

Note that the dot product F(r(t)) · r′(t) is a function in t, so that the right hand side is just the usual
integral of a function.

Now you are rightfully worried about to what extent this integral is well defined, i.e., independent of
the choice of the parametrization. It turns out that it is well defined once you choose an orientation for
C. Here is a picture.

Forward

Backward

Curve with Two Orientations

A choice of an orientation gives you a consistent choice of a unit tangent vector T at each point on
the curve. For example, you can parametrize a unit circle by t 7→ (cos(t),sin(t)). Then when you take
the velocity vector, you get (−sin(t),cos(t)), pointing in the counterclockwise direction (the blue arrow
below). If you change t by −t, then you are still parametrizing the same circle, but now your tangent
vector becomes (sin(t),cos(t)), which is pointing in the clockwise direction (the red arrow below).

P

Given a parametrization r : [a,b] → Rn of a curve C, you can easily figure out the orientation by
looking at how the point moves as t increases. You can always flip the orientation by a sign: Say you
define r̄ : [−b,−a]→ Rn by r̄(t) = r(−t). Then r̄ will have the opposite orientation.

Given r, we define the unit speed reparametrization by introducing a parameter s defined by

s(t) =
∫ a+t

a
∥r′(u)∥du.

Then we have
ds
dt

= ∥r′(t)∥.

Let us ignore the extreme case that the curve C is just a point. Then t 7→ s(t) defines a bijection between
[a,b] and [0, length(C)]. Let r̃(s) be the function such that r̃(s(t)) = r(t). Then by the chain rule we have

dr̃
ds

· ds
dt

=
dr
dt

=⇒ r̃′(s) =
r′(t)

∥r′(t)∥
⇒ ∥r̃′(s)∥= 1.

The unit tangent vector T is nothing but r̃′(s). The parametrization r̃(s) depends only on the orientation
of C chosen by r(t) but other than that, it does not depend on r(t).

To sum up, given an oriented curve C, we have a canonically defined unit speed parametrization with
parameter s. Then we can define the integral of F along C as∫

C
(F ·T)ds.

This agrees with (1).
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Line integrals of vector fields have important physical interpretations. The first is the work done by
a force field F along a curve C. If F represents a force acting on an object, the line integral

∫
C F ·Tds

computes the work done by the force as the object moves along C. The second interpretation is the
circulation of a flow in fluid dynamics. If F represents the velocity field of a fluid, the line integral∮

C F ·Tds measures the circulation of the fluid around the closed curve C. Circulation quantifies the
tendency of the fluid to rotate around C, and it is particularly useful in studying vortices and rotational
flows. For example, suppose that we consider the figure in page 1 and we compute the circulation around
the circle of radius r with counterclockwise orientation. Then we have∮

C
F ·dr =

∫ 2π

0
(−sin(θ)i+ cos(θ)j) · (−r sin(θ)i+ r cos(θ)j)dθ =

∫ 2π

0
rdθ = 2πr

which is precise the length of the circle C.


