LECTURE 8

ZIQUAN YANG

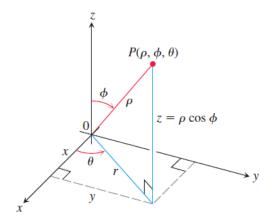
In the 2d case, you can use either the standard *xy*-coordinates or the polar coordinates. When you do 3d integrals, you may also integrate along *z* as usual and obtain a function in (x, y), which you can then integrate using polar coordinates. The resulting coordinate system, i.e., (r, θ, z) is called cylindrical coordinates. Since nothing is going on for the *z*-coordinate, we have:

Theorem 1. The change-of-coordinate formula for integrals in terms of cylindrical coordiantes with respect to the rectangular coordinates is given by
(1) $dxdydz = rdzdrd\theta$.

Example 2. Suppose we want to integrate the function f(x, y, z) over the region Ω above the cylinder $z = \sqrt{x^2 + y^2}$ and below the plane z = 4. Then in cylindrical coordinates the integral is set up as

$$\int_0^{2\pi} \int_0^2 \int_r^4 f(r\cos\theta, r\sin\theta, z) r dz dr d\theta.$$

Besides cylindrical coordinates, we can also use spherical coordinates for \mathbb{R}^3 . Here is the picture:



In a sense, you can think of spherical coordinates as "cylindrical coordinates" squared. Namely, we first convert the *xy*-plane to $r\theta$ -plane. Then, for each fixed θ , we convert the *rz*-plane to $\rho\phi$ -plane. To figure out the change-of-coordinate formula, let us first convert (ρ, ϕ) to (*z*, *r*) when θ is fixed:

$$r = \rho \sin(\phi), z = \rho \cos(\phi).$$

Then we convert (r, θ) to (x, y), which is given by the usual

$$x = r\cos(\theta), y = r\sin(\theta)$$

The relation of (ρ, ϕ) to (z, r) is the same as the one of (r, θ) to (x, y). To sum up, the change-ofcoordinate formula is given by

$$x = \rho \sin(\phi) \cos(\theta), y = \rho \sin(\phi) \sin(\theta), z = \rho \cos(\phi).$$

Date: February 12, 2025.

Theorem 3. The change-of-coordinate formula for integrals in terms of spherical coordiantes with respect to the rectangular coordinates is given by

$$dxdydz = \rho^2 \sin(\phi) d\rho d\theta d\phi$$

Instead of justifying this particular formula, I will wait for the general theorem of change-of-coordiante formula for integrals. For now, you can just accept it as a blackbox. As a reality check, we can start by computing the volume of the 3-dimensional ball \mathbb{B}^3 of radius *a*. Note that in terms of spherical coordinates, the ball \mathbb{B}^3 is given by

$$\{(\boldsymbol{\rho}, \boldsymbol{\theta}, \boldsymbol{\phi}) \in \mathbb{R}^3 \mid \boldsymbol{\rho} \in [0, a], \boldsymbol{\theta} \in [0, 2\pi], \boldsymbol{\phi} \in [0, \pi]\}$$

In other words, the ball \mathbb{B}^3 becomes a rectangular box $[0,a] \times [0,2\pi] \times [0,\pi]$. Let us call the latter *R*. In class, I got myself confused for a moment about why the bounds for ϕ goes from 0 to π as opposed to 2π . Here is the reason: The map $R \to \mathbb{B}^3$ defined by $x \mapsto \rho \sin(\phi) \cos(\theta), y \mapsto \rho \sin(\phi) \sin(\theta), z \mapsto \rho \cos(\phi)$ is a bijection. But if you let ϕ to go from 0 to 2π in the definition of *R*, then this map will be a 2-to-1 map for most points on \mathbb{B}^3 . Indeed, if (ρ, θ, ϕ) is such a point, and $\theta < \pi$, then (ρ, θ, ϕ) and $(\rho, \theta + \pi, 2\pi - \phi)$ get mapped to the same point.

Now, the volume of \mathbb{B}^3 is computed by

$$\int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{2} \sin(\phi) dr d\phi d\theta = \frac{4}{3} \pi a^{3}.$$

This agrees with the formula which you should have known already.

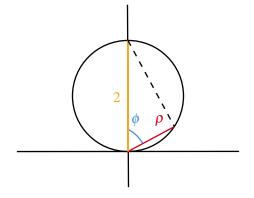
Example 4. What is the surface cut out by the equation $x^2 + y^2 + (z-1)^2 = 1$ in terms of the spherical coordinates? Well, the most naive thing you can do is to do a brute force computation: Plug in $x \mapsto \rho \sin(\phi) \cos(\theta), y \mapsto \rho \sin(\phi) \sin(\theta), z \mapsto \rho \cos(\phi)$ to get

$$\left(\rho\sin(\phi)\cos(\theta)\right)^2 + \left(\rho\sin(\phi)\sin(\theta)\right)^2 + \left(\rho\cos(\phi)\right)^2 = 1,$$

which simplifies to

$$\rho = 2\cos(\phi).$$

On the other hand, you can quickly figure out the answer by some geometry. You know what $x^2 + y^2 + z^2 = 1$ looks like—it is just the unit sphere centered at the origin. Now, if you change z to z - 1, then this amounts moving the picture upwards by 1 unit. You end up getting a unit sphere centered at (0,0,1) instead, so that the sphere is tangent to the xy-plane. If you draw a picture, then you see there is no constraint on θ , so that θ does not appear in the equation, and that ρ and ϕ are related by (3) because of the following picture:

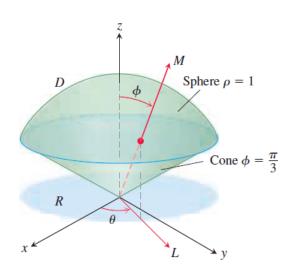


Example 5. Let us compute the volume of the ice cream cone Ω as below:

One quickly figures out that in terms of spherical coordiantes, Ω is given by the rectangular box

$$\{(\rho, \theta, \phi) \in \mathbb{R}^3 \mid \rho \in [0, 1], \theta \in [0, 2\pi], \phi \in [0, \pi/3]\}.$$

(2)



Therefore, we set up the integral as

$$\int_0^{2\pi} \int_0^{\pi/3} \int_0^1 \rho \sin(\phi) dr d\theta d\phi$$

which one quickly evaluates to be $\pi/3$.

Now let us check our answer using cylindrical coordinates. The projection of Ω to the *xy*-plane is given by the intersection circle of the sphere with the cone $\phi = \pi/3$. The circle has radius $\sqrt{3}/2$, so the circle is given by $x^2 + y^2 = 3/4$. Now fix any (x, y) within the circle, the *z* runs from the intersection point of $\phi = \pi/3$ with the vertical line through (x, y) to that of the sphere with the same line. Therefore, the region Ω in terms of the cylindrical coordinates is given by

$$\{(r, \theta, z) \in \mathbb{R}^3 \mid r \in [0, \frac{\sqrt{3}}{2}], \theta \in [0, 2\pi], z \in [\frac{r}{\sqrt{3}}, \sqrt{1-r^2}]\},\$$

so that the integral is

$$\int_{0}^{2\pi} \int_{0}^{\sqrt{3}/2} \int_{r/\sqrt{3}}^{\sqrt{1-r^2}} r dz dr d\theta = 2\pi \int_{0}^{\sqrt{3}/2} r \left(\sqrt{1-r^2} - \frac{r}{\sqrt{3}}\right) dr$$

After some tedious computation, we find that the integral is also $\pi/3$.

Hopefully this example gives you some idea on when to use spherical coordinates and when to use cylindrical coordinates.