
LECTURE 8

ZIQUAN YANG

In the 2d case, you can use either the standard xy-coordinates or the polar coordinates. When you
do 3d integrals, you may also integrate along z as usual and obtain a function in (x,y), which you can
then integrate using polar coordinates. The resulting coordinate system, i.e., (r,θ ,z) is called cylindrical
coordinates. Since nothing is going on for the z-coordinate, we have:

Theorem 1. The change-of-coordinate formula for integrals in terms of cylindrical coordiantes
with respect to the rectangular coordinates is given by

(1) dxdydz = rdzdrdθ .

Example 2. Suppose we want to integrate the function f (x,y,z) over the region Ω above the cylinder
z =

√
x2 + y2 and below the plane z = 4. Then in cylindrical coordinates the integral is set up as∫ 2π

0

∫ 2

0

∫ 4

r
f (r cosθ ,r sinθ ,z)rdzdrdθ .

Besides cylindrical coordinates, we can also use spherical coordinates for R3. Here is the picture:

In a sense, you can think of spherical coordinates as “cylindrical coordiantes” squared. Namely, we
first convert the xy-plane to rθ -plane. Then, for each fixed θ , we convert the rz-plane to ρφ -plane. To
figure out the change-of-coordinate formula, let us first convert (ρ,φ) to (z,r) when θ is fixed:

r = ρ sin(φ),z = ρ cos(φ).

Then we convert (r,θ) to (x,y), which is given by the usual

x = r cos(θ),y = r sin(θ).

The relation of (ρ,φ) to (z,r) is the same as the one of (r,θ) to (x,y). To sum up, the change-of-
coordinate formula is given by

x = ρ sin(φ)cos(θ),y = ρ sin(φ)sin(θ),z = ρ cos(φ).
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Theorem 3. The change-of-coordinate formula for integrals in terms of spherical coordiantes
with respect to the rectangular coordinates is given by

(2) dxdydz = ρ
2 sin(φ)dρdθdφ .

Instead of justifying this particular formula, I will wait for the general theorem of change-of-coordiante
formula for integrals. For now, you can just accept it as a blackbox. As a reality check, we can start by
computing the volume of the 3-dimensional ball B3 of radius a. Note that in terms of spherical coordi-
nates, the ball B3 is given by

{(ρ,θ ,φ) ∈ R3 | ρ ∈ [0,a],θ ∈ [0,2π],φ ∈ [0,π]}.

In other words, the ball B3 becomes a rectangular box [0,a]× [0,2π]× [0,π]. Let us call the latter R. In
class, I got myself confused for a moment about why the bounds for φ goes from 0 to π as opposed to 2π .
Here is the reason: The map R → B3 defined by x 7→ ρ sin(φ)cos(θ),y 7→ ρ sin(φ)sin(θ),z 7→ ρ cos(φ)
is a bijection. But if you let φ to go from 0 to 2π in the definition of R, then this map will be a 2-to-1 map
for most points on B3. Indeed, if (ρ,θ ,φ) is such a point, and θ < π , then (ρ,θ ,φ) and (ρ,θ +π,2π−φ)
get mapped to the same point.

Now, the volume of B3 is computed by∫ 2π

0

∫
π

0

∫ a

0
ρ

2 sin(φ)drdφdθ =
4
3

πa3.

This agrees with the formula which you should have known already.

Example 4. What is the surface cut out by the equation x2 + y2 +(z−1)2 = 1 in terms of the spherical
coodinates? Well, the most naive thing you can do is to do a brute force computation: Plug in x 7→
ρ sin(φ)cos(θ),y 7→ ρ sin(φ)sin(θ),z 7→ ρ cos(φ) to get(

ρ sin(φ)cos(θ)
)2

+
(
ρ sin(φ)sin(θ)

)2
+
(
ρ cos(φ)

)2
= 1,

which simplifies to

(3) ρ = 2cos(φ).

On the other hand, you can quickly figure out the answer by some geometry. You know what x2 +
y2 + z2 = 1 looks like—it is just the unit sphere centered at the origin. Now, if you change z to z− 1,
then this amounts moving the picture upwards by 1 unit. You end up getting a unit sphere centered at
(0,0,1) instead, so that the sphere is tangent to the xy-plane. If you draw a picture, then you see there is
no constraint on θ , so that θ does not appear in the equation, and that ρ and φ are related by (3) because
of the following picture:

φ ρ

2

Example 5. Let us compute the volume of the ice cream cone Ω as below:

One quickly figures out that in terms of spherical coordiantes, Ω is given by the rectangular box

{(ρ,θ ,φ) ∈ R3 | ρ ∈ [0,1],θ ∈ [0,2π],φ ∈ [0,π/3]}.
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Therefore, we set up the integral as ∫ 2π

0

∫
π/3

0

∫ 1

0
ρ sin(φ)drdθdφ ,

which one quickly evaluates to be π/3.
Now let us check our answer using cylindrical coordinates. The projection of Ω to the xy-plane is

given by the intersection circle of the sphere with the cone φ = π/3. The circle has radius
√

3/2, so the
circle is given by x2 + y2 = 3/4. Now fix any (x,y) within the circle, the z runs from the intersection
point of φ = π/3 with the vertical line through (x,y) to that of the sphere with the same line. Therefore,
the region Ω in terms of the cylindrical coordinates is given by{

(r,θ ,z) ∈ R3 | r ∈ [0,

√
3

2
],θ ∈ [0,2π],z ∈ [

r√
3
,
√

1− r2]
}
,

so that the integral is∫ 2π

0

∫ √
3/2

0

∫ √
1−r2

r/
√

3
rdzdrdθ = 2π

∫ √
3/2

0
r
(√

1− r2 − r√
3

)
dr.

After some tedious computation, we find that the integral is also π/3.
Hopefully this example gives you some idea on when to use spherical coordinates and when to use

cylindrical coordinates.


