LECTURE 8

ZIQUAN YANG

In the 2d case, you can use either the standard xy-coordinates or the polar coordinates. When you
do 3d integrals, you may also integrate along z as usual and obtain a function in (x,y), which you can
then integrate using polar coordinates. The resulting coordinate system, i.e., (r,0,z) is called cylindrical
coordinates. Since nothing is going on for the z-coordinate, we have:

Theorem 1. The change-of-coordinate formula for integrals in terms of cylindrical coordiantes
with respect to the rectangular coordinates is given by

(1) dxdydz = rdzdrd0.
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Example 2. Suppose we want to integrate the function f(x,y,z) over the region Q above the cylinder
7= +/x%+y? and below the plane z = 4. Then in cylindrical coordinates the integral is set up as

2 2 4
/ / / f(rcos8,rsin®,z)rdzdrd6.
0 0 Jr

Besides cylindrical coordinates, we can also use spherical coordinates for R3. Here is the picture:

In a sense, you can think of spherical coordinates as “cylindrical coordiantes” squared. Namely, we
first convert the xy-plane to r0-plane. Then, for each fixed 8, we convert the rz-plane to p ¢-plane. To
figure out the change-of-coordinate formula, let us first convert (p, ¢) to (z,r) when 0 is fixed:

r=psin(¢),z=pcos(¢).
Then we convert (r, ) to (x,y), which is given by the usual
x=rcos(0),y = rsin(0).

The relation of (p,¢) to (z,r) is the same as the one of (r,0) to (x,y). To sum up, the change-of-
coordinate formula is given by

x=psin(¢)cos(0),y = psin(¢)sin(6),z = pcos(¢).
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Theorem 3. The change-of-coordinate formula for integrals in terms of spherical coordiantes
with respect to the rectangular coordinates is given by

) dxdydz = p*sin(¢)dpdOde.

Instead of justifying this particular formula, I will wait for the general theorem of change-of-coordiante
formula for integrals. For now, you can just accept it as a blackbox. As a reality check, we can start by
computing the volume of the 3-dimensional ball B? of radius a. Note that in terms of spherical coordi-
nates, the ball B? is given by

{(p,0,0) eR*| p €[0,a],0 € [0,27],¢ € [0, 7]}

In other words, the ball B® becomes a rectangular box [0,a] x [0,27] x [0, 7]. Let us call the latter R. In
class, I got myself confused for a moment about why the bounds for ¢ goes from 0 to & as opposed to 27.
Here is the reason: The map R — B defined by x + psin(¢)cos(8),y — psin(¢)sin(8),z+> pcos(¢)
is a bijection. But if you let ¢ to go from O to 27 in the definition of R, then this map will be a 2-to-1 map
for most points on B*. Indeed, if (p, 6,¢) is such a point, and 6 < 7, then (p,0,¢) and (p,0 + 7,27 — @)
get mapped to the same point.

Now, the volume of B is computed by

2% T pa 4
/ / / p?sin(¢)drd$pd6 = —na’.
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This agrees with the formula which you should have known already.

Example 4. What is the surface cut out by the equation x*> +y? + (z— 1)?> = 1 in terms of the spherical
coodinates? Well, the most naive thing you can do is to do a brute force computation: Plug in x —

psin(¢)cos(0),y — psin(¢)sin(6),z— pcos(9) to get
(p sin((j))cos(e))2 + (psin(¢) sin(Q))2 +(p cos((i)))2 =1,

which simplifies to

3) p =2cos(9).

On the other hand, you can quickly figure out the answer by some geometry. You know what x> +
y? +z> = 1 looks like—it is just the unit sphere centered at the origin. Now, if you change z to z— 1,
then this amounts moving the picture upwards by 1 unit. You end up getting a unit sphere centered at
(0,0, 1) instead, so that the sphere is tangent to the xy-plane. If you draw a picture, then you see there is
no constraint on 6, so that 8 does not appear in the equation, and that p and ¢ are related by (3) because
of the following picture:

Example 5. Let us compute the volume of the ice cream cone Q as below:

One quickly figures out that in terms of spherical coordiantes, Q is given by the rectangular box

{(p.6.9) eR*[p €[0,1],6 €[0.27].¢ € [0,7/3]}.
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Therefore, we set up the integral as

/Ozfr/on/3/01p5in(¢)drd9d¢’

which one quickly evaluates to be /3.

Now let us check our answer using cylindrical coordinates. The projection of Q to the xy-plane is
given by the intersection circle of the sphere with the cone ¢ = 7/3. The circle has radius v/3/2, so the
circle is given by x? 4+y? = 3/4. Now fix any (x,y) within the circle, the z runs from the intersection
point of ¢ = /3 with the vertical line through (x,y) to that of the sphere with the same line. Therefore,
the region Q in terms of the cylindrical coordinates is given by

{(n6,2) €eR* | re o, ?],9 €[0,2n],z € [\%,\/ﬁ]}’

so that the integral is

2w 1V3/2 V112 V3/2 r
ddd9:27t/ r(V1=r = Var.
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After some tedious computation, we find that the integral is also /3.

Hopefully this example gives you some idea on when to use spherical coordinates and when to use
cylindrical coordinates.



