LECTURE 3

ZIQUAN YANG

In calculus you know that if a function f is defined on an interval which is not closed and bounded,
say [a,D), sometimes it still makes sense to integrate f. There are two ways you can take to make sense

of this. One way is to define
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provided that the right hand side exists. Another way is to define a function f: [a,b] — O which agrees
with f over [a,b) and f(b) = 0. Then we define
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provided that the right hand side exists. The two ways are equivalent. The second way is conceptually
easier whereas the first is more useful for computations. For example, we have
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although the integrand is not defined at x = 0.

A key consequence of Fubini’s theorem is that when you integrate a continuous function f over
[a,b] x [c,d], you can exchange of order of integration. This is not true when you have non-closed
intervals.

Example 1. Suppose we want to integrate the function
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Now we compute
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In fact, the function f is not integrable over the region (0, 1] x (0, 1] even though both double integrals
make sense. In the proof of Fubini’s theorem, we used that a continuous function over a closed bounded
interval is automatically uniformly continuous. This is not true in general for non-closed intervals.

On the other hand, when Fubini’s theorem is applicable, the flexibility of exchanging the order of
integration can be a great advantage.

However,
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Example 2. Integrate the function f(x,y) = xsin(xy) over the region [0, 1] x [7/2, 7].
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which is very hard. However, if we do
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then it becomes much easier.
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