HOMEWORK 6

NAME:

Problem 1: Integrate $f(x,y,z) = x + \sqrt{y} - z^2$ over the path from (0,0,0) to (1,1,1) given by $t \mapsto (t^2, t^2, t^2)$ for $t \in [0,1]$.

Date: February 28, 2025.

Problem 2: Find the arc length of the cardioid $r = 2 + 2\cos(\theta)$.

Problem 3: Let *C* be the ellipse in which the plane 2x + 3y - z = 0 meets the cylinder $x^2 + y^2 = 12$. Show, without evaluating line integrals directly, that the circulation of the field $F = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ around *C* in either orientation is zero. Problem 4: Let **F** be the vector field $-y\mathbf{j} + x\mathbf{i}$. Integrate **F** along the square with vertices $(\pm 1, \pm 1)$ with counterclosewise orientation.

Problem 5: Find the integral of the form $\sqrt{x+y}dx$ along the triangle with vertices (0,0), (1,3), (0,3) in counterclockwise orientation.