HOMEWORK 1

NAME:

Problem 1: Integrate the function $f(x,y) = \sqrt{x}/y^2$ over the region $[0,4] \times [1,2]$.

Date: January 13, 2025.

Problem 2: Find the volume below the function x/(1+xy) over $[0,1] \times [0,2]$.

Problem 3: Evaluate the integral

$$\int_0^1 \int_0^3 x e^{xy} dx dy.$$

Problem 4: Compute the following double integral.

$$\int_0^{\sqrt{\pi/3}} \int_0^1 xy \sin(xy^2) dx dy$$

HOMEWORK 1 5

Problem 5: Suppose that $f:[a,b] \to \mathbb{R}$ is an integrable function and

$$\int_{a}^{b} f = \lim_{\|P\| \to 0} L(P, f) = L.$$

Recall that this means that for every $\varepsilon > 0$, there exists $\delta > 0$ such that for every partition P of [a,b], we have $|L(P,f)-L| < \varepsilon$. Show that if $g:[a,b] \to \mathbb{R}$ is another function such that f=g except possibly at some fixed $x_0 \in [a,b]$, then g is also integrable and

$$\int_{a}^{b} g = \lim_{\|P\| \to 0} L(P, g) = L$$

as well. (Hint: Consider the cases $x_0 \in P$ and $x_0 \notin P$.)