Bewarks: (1) If we let
$$\vec{F} = M_{k}^{2} + N_{j}^{2} \iff \omega = Mdx + Ndy$$

then $(\vec{\nabla} \times \vec{F}) \cdot \hat{n} dA = (N_{x} - M_{y}) \hat{k} \cdot \hat{n} dA \iff d\omega$
 $\vec{h} = \hat{k}$
 $\vec{h} = \hat{k}$

This suggest the correspondence (in IR?):

$$3_1 dyndz + 3_2 dzndx + 3_3 dxndy \leftrightarrow F=3_1i+3_j+3_k$$

Then
$$\overrightarrow{F} \leftrightarrow \omega$$
 (1-four correspondence)
 $\overrightarrow{\nabla x}\overrightarrow{F} \leftrightarrow d\omega$ (2-four correspondence)
(3) Similarly f
 $\overrightarrow{\nabla z} \leftrightarrow dz$ (1-four correspondence)
And, if we make the following correspondence
 $f dx \wedge dy \wedge dz \leftrightarrow f$
then $3 \leftrightarrow \overrightarrow{F}$ (2-four correspondence)
 $d_{5} \leftrightarrow \overrightarrow{\nabla \cdot F}$ (3-four 20-four correspondence)
 $d_{5} \leftrightarrow \overrightarrow{\nabla \cdot F}$ (3-four 20-four correspondence)
See next example:
 $eq_{2} : S = 5_{1} dy \wedge dz + 5_{2} dz \wedge dx + ds_{3} \wedge dx \wedge dy$
Then $d_{5} = ds_{1} \wedge dy \wedge dz + (\dots + \frac{\partial s_{2}}{\partial y} dy + \dots) \wedge dz \wedge dx$
 $+ (\dots + \frac{\partial s_{3}}{\partial z} dz) \wedge dx \wedge dy$
 $= (\frac{\partial s_{1}}{\partial x} + \frac{\partial s_{2}}{\partial y} + \frac{\partial s_{3}}{\partial z}) dx \wedge dy \wedge dz$
 $= (\overrightarrow{\nabla \cdot F}) dx \wedge dy \wedge dz$
 $where $\overrightarrow{F} = s_{1} \cdot 1 + s_{2} \cdot 1 + s_{3} \cdot k$$

Hence the divergence that can be written as

$$\iiint dS = \iiint \left(\frac{2S_1}{2X} + \frac{2S_2}{2Y} + \frac{2S_3}{2Z}\right) dX \wedge dy \wedge dZ$$

$$= \iiint \left(\overrightarrow{P} \cdot \overrightarrow{F}\right) dV = \iint \overrightarrow{F} \cdot \overrightarrow{h} dT$$
To see the relation between $\overrightarrow{F} \cdot \overrightarrow{h} dT$ and S,
we parametrize ∂D :
 $\overrightarrow{P}(y,v) = X(y,v) \overrightarrow{i} + Y(y,v) \overrightarrow{j} + Z(y,v) \overrightarrow{k}$
 $\int \overrightarrow{V_u} = X_u \overrightarrow{i} + Y_u \overrightarrow{j} + Z_u \overrightarrow{k}$
 $\int \overrightarrow{V_u} = X_u \overrightarrow{i} + Y_u \overrightarrow{j} + Z_u \overrightarrow{k}$
 $\int \overrightarrow{V_u} = X_u \overrightarrow{i} + Y_u \overrightarrow{j} + Z_u \overrightarrow{k}$
 $\int \overrightarrow{V_u} = X_u \overrightarrow{i} + Y_u \overrightarrow{j} + Z_u \overrightarrow{k}$
 $\int \overrightarrow{V_u} = \overline{V_u} \overrightarrow{k} + \left|\overrightarrow{v_u} \overrightarrow{v_u}\right| \overrightarrow{j} + \left|\overrightarrow{v_u} \overrightarrow{v_u}\right| \overrightarrow{k}$
 $= \frac{\partial(y,z)}{\partial(y,v)} \overrightarrow{i} + \frac{\partial(z,x)}{\partial(y,v)} \overrightarrow{j} + \frac{\partial(x,y)}{\partial(y,v)} \overrightarrow{k}$

If
$$f_{u}xf_{v}$$
 is outward, then

$$\hat{\eta} = \frac{\vec{f}_{u}x\vec{f}_{v}}{\|\vec{f}_{u}x\vec{f}_{v}\|} \quad \& \quad d\sigma = \|\vec{f}_{u}x\vec{f}_{v}\| \, du \, dv$$

$$= \|\vec{f}_{u}x\vec{f}_{v}\| \, du \, dv$$

$$(if \text{ nieutation convect})$$
Then $\vec{F} \cdot \hat{\eta} \, d\sigma = \vec{F} \cdot (\vec{f}_{u}x\vec{f}_{v}) \, du \, dv$

$$= \left(\sum_{i} \frac{\partial(y_{i},z)}{\partial(y_{i}v)} + \sum_{i} \frac{\partial(z_{i},x)}{\partial(y_{i}v)} + \sum_{i} \frac{\partial(x_{i},y_{i})}{\partial(y_{i}v)} \right) \, du \, dv$$

$$= \sum_{i} dy \, dz + \sum_{i} dz \, dx \, dx + \sum_{i} dx \, ndy = \sum_{i} dy \, dz$$

Hence divergence that is

$$\int \int dz = \int z$$

 $D = \partial D$

$$\frac{eq3}{\vec{F}} = M_{1}^{2} + N_{1}^{2} + L_{1}^{2} \iff \omega = Mdx + Ndy + Ldz$$
Then $\vec{\nabla}x\vec{F} \iff$

$$d\omega = (L_{y} - N_{z})dyAdz + (M_{z} - L_{x})dzAdx + (N_{x} - N_{y})dxAdy$$
As $\vec{w} \cdot eq2$, $\hat{n} = \frac{\vec{F}_{u}x\vec{r}_{v}}{\|\vec{F}_{u}x\vec{r}_{v}\|}$, $d\sigma = \|\vec{F}_{u}x\vec{r}_{v}\|duAdv$

$$(\vec{\nabla}x\vec{F})\cdot\hat{n}d\sigma = (\vec{\nabla}x\vec{F})\cdot(\vec{F}_{u}x\vec{r}_{v})duAdv$$

$$= \left[(L_{y} - N_{z})\frac{\partial(y,z)}{\partial(y,v)} + (M_{z} - L_{x})\frac{\partial(z,x)}{\partial(y,v)} + (N_{x} - M_{y})\frac{\partial(x,y)}{\partial(y,v)}\right]duAdv$$

$$= (L_{y} - N_{z})dyAdz + (M_{z} - L_{x})dzAdx + (N_{x} - M_{y})dxAdy$$

$$= d\omega$$

 \times

Generalization to manifold of n-dimension with boundary
(shipped)
•
$$M = n \dim l Manifold (oriented)$$

• $\partial M = boundary (oriented with "induced" mentation)$
• $\omega = (n-1) - four an M (support)$
Then $\int d\omega = \int \omega$
 $M = \partial M$
 $n - divid (n-1) - divid
integral integral
Note: ∂M is always closed, i.e. no boundary.
 $\partial (\partial M) = \partial^2 M = 0$
boundary thas no boundary
 ∂S is a closed curve$

Hence if u=dy, for some (n-2)-four y, then $\int_{M} d(d\eta) = \int_{M} d\omega = \int_{M} \omega$ $= \int_{\partial M} d\eta = \int_{\partial (\partial M)} \eta = 0 \quad (fn any \eta)$ This suggests $d^2\eta = 0$, \forall differential form η Pf (of 0-form and 1-form in IR3) • $0 - form \quad \gamma = f$ a (smooth) function $df \iff \overline{\nabla}f$ (1-fam) Then $d^{2}f \iff \overline{\nabla} \times (\overline{\nabla} f) \qquad (2-form)$ $d^{2}f \iff 0$ $- \quad d^2 f = 0$ • I-fam $\eta \iff \vec{F}$ $d\eta \iff \vec{\nabla} X \vec{F}$ (2-form) $\Rightarrow d^2 \eta = 0$

$$\frac{\text{Romark}}{d^2(z-\text{fam})} = 4 - \text{fam} = 0 \quad \text{in } \mathbb{R}^3$$

$$\frac{d^2(3-\text{fam})}{d^2(3-\text{fam})} = 5 - \text{fam} = 0 \quad \text{in } \mathbb{R}^3$$

$$\therefore \quad \forall \quad \text{diff. fam} \quad \forall, \quad d^2\eta = 0.$$

eg: let
$$w = \frac{-y}{\chi^2 + y^2} dx + \frac{x}{\chi^2 + y^2} dy$$

check: $dw = 0$ ($dw \iff \overline{\nabla} \times \overline{F} = \overline{0}$)
But $w \neq df$ for any smooth function on $[\mathbb{R}^2(100)]$
($\iff \overline{F} \neq \overline{\nabla}f$)
(Since $w = d\theta$ and θ is not defined on $[\mathbb{R}^2(100)]$
Hence $dw = 0 \Rightarrow w = d\eta$ in general
(\Leftarrow)

Note: Thulo can be written as:

$$\mathcal{N} \subset \mathbb{R}^2$$
 surply-connected, then (for all 1-form w)
 $dw = 0 \iff w = df$ for some supports function
 $f \text{ on } \mathcal{N}$

(End of Term)

Review

Double integrals

- · Riemann sum, integrability, Fubini's Thm,
- · Polar conditates, improper integrals
- · Applications : avea, average, etc.

Triple integrals

- · Riemann sum, integrability, Fubinis Thm,
- · cylindrical & spherical condinates, improper integrals
- · Applications : volume, average, etc

Change of Variables

· Chain Rule, Jacobian (determinant)

mid-term

- · Surface integrals, area elements, orientation,
- · Surface integrals of vector fields (flux)
- · Green's, Stokes' & Divergence Thm
- · Differential Frans

Final Exam Dec 12 (Thu) 9=30-11=30am SRRSH (stage)

- <u>Coverage</u>: All material in lecture notes, tutorial notes, textbook (Ch 14 & 15) & Romework assignments,
 - · except differential forms
 - · emphasis on those material not included in Midtern.
 - 5 questions, answer all. Some are unfamiliar/difficult questions as required by the grade descriptor of A range,
 (Note: Textbook & assignments cartain only basic theory) and basic questions.