Proof of Thm 10 (3-divil case)

Only the "
$$\Leftarrow$$
" part remains to be proved.
By assumption $\vec{F} = M\hat{i} + N\hat{j} + L\hat{k}$ satisfies the system
of eqts. in the Cor. to thun, 9, that is
 $\frac{\partial M}{\partial g} = \frac{\partial N}{\partial x}$, $\frac{\partial N}{\partial z} = \frac{\partial L}{\partial y}$, $e = \frac{\partial L}{\partial x} = \frac{\partial M}{\partial z}$
Hence $\vec{\nabla} x \vec{F} = \vec{0}$.
Let \vec{C} be a simple closed curve in a simply-connected
region D . Then \vec{C} can be defended to a point
inside D . The process of deformation gives an miented
surface $\[mathbb{S} C D$ such that the boundary $\partial \vec{S}$ of $\[mathbb{S} \]$
equals \vec{C} .
By Stokes' Thm \Rightarrow
 $\int_{\vec{C}} \vec{F} \cdot d\vec{F} = \int_{\vec{N}} (\vec{\nabla} x \vec{F}) \cdot \hat{n} d\sigma = o$ (since $\[mathbb{T} x \vec{F} = \vec{0}$)
Then Thin $\[mathbb{G} \Rightarrow \vec{F} \]$ is conservative.

Summary	
$\gamma = 2$	n = 3
Tangential fam of Green's Thm	Stokes' Thm
$\oint_{C} \vec{F} \cdot d\vec{r} = \iint_{R} (\vec{\eta} \times \vec{F}) \cdot \hat{k} dA$ $(\partial R = C)$	$\oint_{C} \vec{F} \cdot d\vec{r} = \iint_{S} (\vec{\eta} \times \vec{F}) \cdot \hat{h} d\sigma$ $(\partial \beta = C)$
Normal form of Green's Thm	Divergence Thin (next topic)
$\oint_{C} \vec{F} \cdot \hat{\eta} dS = \iint_{R} \vec{\tau} \cdot \vec{F} dA$	SSF.hdv = SSST.FdV
R $C = \partial R$	S=9D D D D D D D D D D D D D
flux": by defenition, ñ à tere	"flux" = n is the "outward" wit
"outward" unit normal of the come	namal to the sanface S encloses
"C" in the "plane".	a solid regim D.

$$\frac{\text{Thm }13}{\text{Let }\vec{F}} \left(\begin{array}{c} \underline{\text{Divergence The acum}} \\ \text{Let }\vec{F} \end{array} \right)$$

$$Let \vec{F} \text{ be a }C^{1} \text{ weda-field }m \quad \Omega^{2} \subseteq \mathbb{R}^{3} \quad (\text{no boundary})$$

$$\vec{S} \text{ be a } \underline{\text{piecewise smooth oriented closed}} \quad \text{surface}$$

$$enclositing \text{ a } (\text{solid}) \text{ region } D \subseteq \Omega^{2}.$$

$$Let \quad \widehat{n} \text{ be the outward pointing unit normal weath field on }\vec{S},$$

$$Then \quad \iiint{\vec{F}} \cdot \hat{n} d\sigma = \iiint{dir}{\vec{F}} dV = \iiint{\vec{\nabla}} \cdot \vec{F} dV$$

$$\vec{S} \quad D \quad D \quad D$$

eg64 Verify Divergence Thu fn

$$\vec{F} = xi_i + yj_i + zk$$

 $\vec{S} = (x^2 + y^2 + z^2 = a^2) (a > 0)$
 $\vec{F} = xi_i + yj_i + zk$

$$(SUnface = S_a^2 z - divide sphere of radius a centered at (0,0,0))$$

 $D = solid ball bounded by S.$

$$\frac{\text{Soln}:}{\hat{n}} = \frac{\chi \hat{i} + y \hat{j} + z \hat{k}}{\sqrt{\chi^2 + y^2 + z^2}} = \frac{1}{\alpha} (\chi \hat{i} + y \hat{j} + z \hat{k}) \quad \text{is the outward}$$

$$\iint_{X^2 + y^2 + z^2} = \frac{1}{\alpha} (\chi \hat{i} + y \hat{j} + z \hat{k}) \quad \text{pointing unit normal}$$

$$\iint_{S} \hat{F} \cdot \hat{n} d\sigma = \iint_{S} (\chi \hat{i} + y \hat{j} + z \hat{k}) \cdot \frac{1}{\alpha} (\chi \hat{i} + y \hat{j} + z \hat{k}) d\sigma = \alpha \iint_{S} d\sigma$$

$$= 4\pi a^3$$
 (check!)

On the other hand $div \vec{F} = \vec{\nabla} \cdot \vec{F} = (\hat{z} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}) \cdot (x\hat{z} + y\hat{j} + z\hat{k})$ $= \frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} + \frac{\partial z}{\partial z} = 3$ $= \iiint div \vec{F} dV = 3 \iiint dV = 3 \cdot \frac{4\pi a^3}{3} = 4\pi a^3$ $= \iiint \vec{F} \cdot \hat{h} d\sigma$

$$\frac{965}{5} = xaing i + (ony+z)j + z^{2}k$$
(mupate outward flux of \mathring{F} across
the boundary ∂T of
 $T = \{(x,y,z) \in \mathbb{R}^{3} : x+y+z \leq 1 \}$
(tetrahadron)

$$\frac{Solu}{5} = div \hat{F} = \overline{\nabla} \cdot \widehat{F} = \frac{2}{2\chi}(xainy) + \frac{2}{2y}(ony+z) + \frac{2}{2z}(z^{2})$$

$$= 27$$
 (check!)

eg66 : Let S, Sz be 2 surfaces with campon boundary curve C' such that S, U.S. forms a closed surface enclosing a solid regim D (without hole) Suppre n'is see outward unit nowal of the (boundary of) solid region D. Then the <u>mentations</u> of C with respect to (S_1, \hat{n}) and (S_2, \hat{n}) are <u>opposite</u> (since "6" of S, & Sz are opposite) Find SSSdiv (\$x\$ dv, where F is a C² vector field on D. $S(\vec{\tau} \times \vec{F}) \cdot \hat{n} d\tau = \oint_{\sigma} \vec{F} \cdot d\vec{r}$ auti-clockwide wit (S_{1}, \hat{n}) Soh S, $= -\oint_{C} \vec{F} \cdot d\vec{r}$ auti-clockwisely wrt (\vec{s}_{2}, \hat{n}) $= - \left(\left(\vec{\nabla} \times \vec{F} \right) \cdot \vec{n} \, d\sigma \right)$ S, $\Rightarrow \int (\vec{\nabla} x \vec{F}) \cdot \vec{n} d\tau = 0 \quad (\text{See eg61(c) for explicit example})$ Sus, Divergence Thm $\Rightarrow \iiint div (\vec{\nabla} \times \vec{F}) dV = \iint (\vec{\nabla} \times \vec{F}) \cdot \hat{n} d\sigma = 0$ SUS,

