Orientation of Surfaces
To integrate vecta fields over surfaces, we need

$$\frac{\text{Def 17} (\underline{\text{Orientation}} \text{ of a surface in } \mathbb{R}^3)}{\text{A surface S is orientable if one can define a unit normal
vector field continuously at every point of S.
(Such a chosen normal vector field is called an aientation of n^{st})

$$\frac{\text{ags7}:}{n} = x_{i}^{2} + y_{j}^{2} + z^{2} = 1$$

$$\therefore S \text{ is nientable}$$
(und the chosen \hat{n} is called an aientation)
(ii) Torico
(iii) Möblue strop
is not nientiable (anually referred as a surface of ang side)$$

Pef19 = let
$$\beta$$
 le nientable with unit normal \hat{n} (continuous).
Let \hat{F} be a vecta field on β .
Then the flux of \hat{F} across β is
 $Flux = \iint \hat{F} \cdot \hat{n} d\sigma$

<u>eg59</u>: S= Z=4 $y = \chi^2$, $0 \le \chi \le 1$, $0 \le Z \le 4$ 'n a with is given by the 4=x2 natural parametrization $\vec{F}(x,z) = \chi_{\lambda}^{2} + \chi_{1}^{2} + zk$ let = yzit Xj - zi Find (SÉON do Som: To calculate $\hat{n} = \frac{\vec{r}_x \times \vec{r}_z}{\|\vec{r}_x \times \vec{r}_z\|}$, we have $\begin{cases} \vec{F}_{x} = \hat{\lambda} + 2\hat{\chi}\hat{j} \\ \vec{F}_{z} = \hat{b} \end{cases} \Rightarrow \vec{F}_{x} \times \vec{F}_{z} = 2\hat{\lambda}\hat{\lambda} - \hat{j} \quad (check!)$ $\Rightarrow \qquad \hat{\eta} = \frac{z \times i - j}{z \times i - j}$

Then
$$SS\vec{F}\cdot\vec{n} d\sigma = \int_{0}^{4} \int_{0}^{1} (y_{\vec{x}}\vec{i}+x_{\vec{j}}-\vec{z}\cdot\vec{k}) \cdot \frac{zx_{\vec{i}}-\hat{j}}{\sqrt{4x^{2}+1}} \cdot \frac{4x^{2}+1}{\sqrt{4x^{2}+1}} dx dx$$

$$= \int_{0}^{4} \int_{0}^{1} (2x^{3}\vec{z}-x) dx dz = 2 \quad (check!) \quad (check!)$$

$$\frac{\text{Remark}}{S} : \iint_{S} \vec{F} \circ \hat{n} \, d\sigma = \iint_{(u,v)} \vec{F} (F(u,v)) \circ \frac{\vec{r}_{u} \times \vec{r}_{v}}{\|\vec{r}_{u} \times \vec{r}_{v}\|} \|\vec{r}_{u} \times \vec{r}_{v}\| \, du \, dv$$

$$= \iint_{(u,v)} \vec{F} (\vec{F}(u,v)) \circ (\vec{F}_{u} \times \vec{r}_{v}) \, du \, dv$$

$$= \iint_{(u,v)} \vec{F} (\vec{F}(u,v)) \circ (\vec{r}_{u} \times \vec{r}_{v}) \, du \, dv$$

$$= \iint_{(u,v)} \vec{F} (\vec{r}(u,v)) \circ (\vec{r}_{u} \times \vec{r}_{v}) \, du \, dv$$

$$= \iint_{(u,v)} \vec{F} (\vec{r}(u,v)) \circ (\vec{r}_{u} \times \vec{r}_{v}) \, du \, dv$$

Thm 12 (Stokes' Theorem)
Let
$$S$$
 be a precense smooth oriented surface with precense
smooth boundary C (including the case that C is a runion of
finitely many curves). Let
 $\vec{F} = M\hat{i} + N\hat{j} + L\hat{k}$ be a C' vector field.
Suppose C is oriented anti-clockwisely with respect to the
runt namel vector field \hat{n} on \hat{F} . Then
 $\hat{G}_{C} \hat{F} \cdot d\hat{F} = \int_{S} curl \vec{F} \cdot \hat{n} d\sigma = \int_{S} (\vec{r} \times \vec{F}) \cdot \hat{n} d\sigma$

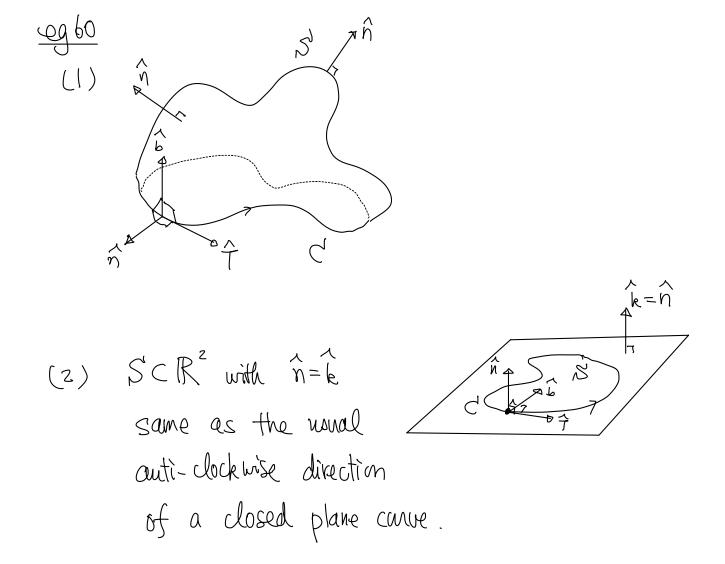
Here: (i)
$$I_{k}C = C_{1} \cup \cdots \cup C_{k}$$
, then it makes

$$\sum_{\lambda=1}^{k} \oint_{C_{i}} \vec{F} \cdot d\vec{r} = \int_{S} (\vec{\nabla} x \vec{F}) \cdot \vec{n} d\sigma$$

$$\hat{J} = \hat{n}x\hat{T}$$
 pointing toward
the surface \hat{S}

$$\vec{b}$$
 \vec{s} $\vec{c} = \partial \vec{s}$

i.e. the unit vector
$$\hat{J}$$
 tangent to \hat{S} , normal to \hat{C}
and pointing toward \hat{S} satisfies
 $\hat{T} = \hat{J} \times \hat{n}$



(3) (to be contid)