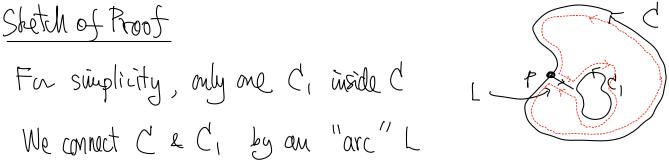
Pf of Thm 10 (n=2)

We only remain to show that if s2 is simply-connected (* connected)
and
$$\forall x \vec{F} = \vec{0}$$
 (i.e. $\frac{2M}{2Y} = \frac{2N}{2X}$, $\vec{F} = M_{1}^{2} + N_{1}^{2}$)
then \vec{F} is conservative.
Gree 1 C₁, C₂ there no intersection
(except at the same end points)
Then "S2 is simply-connected"
 \Rightarrow The regime R enclosed by C₁ e C₂ lies completely inside Ω .
Then Green's Thm \Rightarrow
 $0 = \iint_{R} (\frac{2N}{2X} - \frac{2M}{2Y}) dA = \pm \oint_{C_{1}} (Mdx + Ndy)$
 R
 $C_{1} - C_{2}$
 $\Rightarrow \int_{C_{1}} Mdx + Ndy = \int_{C_{2}} Mdx + Ndy$
Cannot end point and doesn't
intersect C₁ a C₂.
Then Green's in indep. of path & tauce \vec{F} is conservative.

In order to apply Green's Thm to more general situations, we need

The (Green's Thm (general form))
Suppose that we have a simple closed curve C in
$$\mathbb{R}^2$$

 $\int \int \mathcal{L}_{1}^{\prime} \int \mathcal{L}_{2}^{\prime} \int \mathcal{L}_{2}^{\prime$



and consider the "simple" closed convert (starting from the pt p)

$$C^{+} = C + L - C_{1} - L$$
Then the region R enclosed by $C + C_{1}$ is the region
enclosed by C^{+} except the arc L.
Hence $\iint_{R} (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) dA = \iint_{R \setminus L} (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) dA$
(Greens) = $\oint_{C_{1}} (Mdx + Ndy)$
 $= (\oint_{C} + S_{L} - \oint_{C_{1}} - S_{L}) (Mdx + Ndy)$
 $= (\oint_{C} Mdx + Ndy - \oint_{C_{1}} Mdx + Ndy)$

$$\underbrace{eg49}_{X^2+y^2} \stackrel{?}{i} + \frac{x}{x^2+y^2} \stackrel{?}{j} \quad \text{on} \quad |\mathcal{R}| \left\{ 10,0 \right\} = \Omega \left(= \Re_2 \text{ in } g43 \right)$$

we/we calculated $\oint_{C_1} \stackrel{?}{\models} \cdot d\vec{r} = 2\pi \quad \text{fn} \quad C_1 = x^2+y^2 = 1$

(auti-clockwise)

How about

(a)

 $\begin{pmatrix} c \\ 1 \end{pmatrix} \quad \begin{pmatrix} c \\ 1 \end{pmatrix} \end{pmatrix} \quad \begin{pmatrix} c \\ 1 \end{pmatrix} \quad \begin{pmatrix} c \\$

