Pf of Green's thin for Suiple Region
By definition, R is of type (1)
and can be written as
R= {(x,y):
$$a \le x \le b$$
, $g_1(x) \le y \le g_2(x)$ }
let denote the company of the boundary
of R by C₁, C₂, C₃ & C₄ as in the figure
(Note: C₂ and/or C₄
could just be a point)
Then $\partial R = C_1 + C_2 + C_3 + C_4$
as oriented curves
(Using "+" instead of "U" to denote the orientation)
Now C₁ = { y = $g_1(x)$ } can be parametrized by
(x,y): $\overline{F}(t) = (t, g_1(ts))$, $a \le t \le b$
(with correct orientation)

Similarly "-(3" can be parametrized by

$$\widetilde{F}(t) = (t, g_2(t)), \quad a \leq t \leq b \quad (with correct)$$

(intertation)

Hence
$$\int_{C_1}^{b} M(t, g_i(t)) dt$$

and
$$\int_{-C_3} M dx = \int_{a}^{b} M(t, g_2(t)) dt$$

For
$$(\zeta_{z} = \{ x=b, g_{1}(b) \le y \le g_{2}(b) \}$$
, if can be parametrized by
 $\vec{F}(t) = (b, t)$, $g_{1}(b) \le t \le g_{2}(b)$
(with correct intertation)
Sauilarly for $-C_{4} = \{ x=a, g_{1}(a) \le y \le g_{2}(a) \}$;
 $\vec{F}(t) = (a, t)$, $g_{1}(a) \le t \le g_{2}(b)$
(with correct intertation)
Hence $\int_{C_{z}} Mdx = \int_{g_{1}(b)}^{g_{2}(b)} M(b, t) db = 0$
 $\int_{-C_{4}} Mdx = \int_{g_{1}(a)}^{g_{2}(b)} M(a, t) da = 0$
Thurefore $\oint_{\partial R} Mdx = \frac{f}{s=1} \int_{C_{1}} Mdx$
 $= \int_{a}^{b} [M(t, g_{1}(t)) - M(t, g_{2}(t))] dt$
On the other hand, Fubini's Thm \Rightarrow

$$\begin{split} & \iint_{R} - \frac{\partial M}{\partial y} \, dA = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} \left(-\frac{\partial M}{\partial y}\right) dy \, dx \\ &= \int_{a}^{b} -\left(M(x, g_{2}(x)) - M(x, g_{1}(x))\right) dx \\ &= \oint_{\partial R} M dx \end{split}$$

Similarly, R is also type (2)

$$R = \{(x,y) : f_{1}(y) \le X \le f_{2}(y), c \le y \le d\}$$

$$\oint Ndy = -\int_{C}^{d} N(f_{1}(t), t) dt + 0$$

$$= \int_{C}^{d} [N(f_{2}(t), t)) dt + 0$$

$$= \int_{C}^{d} [N(f_{2}(t), t) - N(f_{1}(t), t)] dt$$

$$= \int_{C}^{d} [N(f_{2}(t), t) - N(f_{1}(t), t)] dt$$

$$= \int_{C}^{d} \left[\int_{f_{1}(y)}^{f_{2}(y)} \frac{\partial N}{\partial x} dx \right] dy$$

$$= \int_{R}^{f} \frac{\partial N}{\partial x} dA$$

All together

$$\oint_{\partial R} Mdx + Ndy = \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA$$

Proof of Green's Thin for R = finite runion of sample regions with intersections only along some boundary line segments, and those line segments touch only at the end points at most.

By assumption $R = UR_i$ fuite union s.t. • R_i are simple, and • $R_i \cap R_j = line$ segment of a common boundary portion donoted by L_{ij} $(i \neq j)$ Then $\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dA = \sum_{i} \iint_{R_i} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}\right) dA$ $= \sum_{i} \iint_{R_i} Mdx + Ndy$ (by Green's Thm) $= \sum_{i} \iint_{R_i} Mdx + Ndy$ (by Green's Thm)

Denote
$$C_{i} = the part of PRi with no intersection with
any other R_{j} (except possibly at the end points)
Then $PR_{i} = C_{i} + \sum_{j \neq i} L_{ij}$
where L_{ij} is oriented according to the auti-clackwise
areutation of PR_{i}
Hence $\iint_{R} (\frac{PN}{PX} - \frac{PM}{Py}) dA = \sum_{i} \int_{C_{i} + \sum_{j \neq i} L_{ij}} Mdx + Ndy$
 $R = \sum_{i} \int_{C_{i}} Mdx + Ndy + \sum_{i} \sum_{j \neq i} \int_{L_{ij}} Mdx + Ndy$
Note that, as C_{i} is not a common boundary of any other R_{j}
 $\sum_{i} C_{i} = PR$
 $\therefore \sum_{i} \int_{C_{i}} Mdx + Ndy = \bigoplus_{i} Mdx + Ndy$
Finally, we have $L_{ij} = -L_{ji}$
as R_{i} and R_{i} are located$$

on the two different sides of the common boundary.

$$\sum_{i} \sum_{j \neq i} \int_{\text{Lij}} Mdx + Ndy = \sum_{\substack{i \neq j \\ i \neq j}} \int_{\text{Lij}} Mdx + Ndy$$
$$= \sum_{i < j} \int_{\text{Lij}} Mdx + Ndy + \sum_{\substack{i \neq j \\ i \neq j}} \int_{\text{Iij}} Mdx + Ndy + \sum_{\substack{i \neq j \\ i \neq j}} \int_{\text{Iij}} Mdx + Ndy$$
$$= \sum_{i < j} \left(\int_{\text{Lij}} Mdx + Ndy + \int_{\text{Lji}} Mdx + Ndy \right)$$
$$= \sum_{i < j} \left(\int_{\text{Lij}} Mdx + Ndy - \int_{\text{Lij}} Mdx + Ndy \right)$$
$$= 0$$

This 2nd case basically include almost all situations in the Devel of Advanced Calculus. The proof of <u>general case</u> needs "analysis" and will be omitted here.

$$\frac{\text{Defi}^{2}: \text{ The divergence of } \vec{F} = M_{1}^{2} + N_{1}^{2} \text{ is defined to be}}{\text{div} \vec{F}} = \frac{2M}{2X} + \frac{2M}{3Y}}$$

$$\frac{\text{Note: } \text{div} \vec{F} = \lim_{\epsilon \to 0} \frac{1}{\text{Area}(\overline{D_{\epsilon}}(x,y))} \iint_{\overline{D_{\epsilon}}(x,y)} (\frac{2M}{2X} + \frac{2N}{3Y}) \text{dA}}{(\overline{D_{\epsilon}}(x,y))} (\frac{D_{\epsilon}(x,y)}{D_{\epsilon}(x,y)}) (\frac{D_{\epsilon}(x,y)}{D_{\epsilon}(x,y)}) = 0 \text{dod}}{(\frac{1}{2} + \frac{1}{2} + \frac{1}{$$

Notation = For
$$f(x,y)$$
, $\nabla f = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{j}$ (gradient)
= $(\hat{x}\frac{\partial}{\partial x} + \hat{j}\frac{\partial}{\partial y})f$

It is convenient to denote

$$\vec{\nabla} = \left(\hat{\lambda} \frac{\partial}{\partial \chi} + \hat{j} \frac{\partial}{\partial y}\right)$$
Then
$$\vec{\nabla} \cdot \vec{F} = \left(\hat{\lambda} \frac{\partial}{\partial \chi} + \hat{j} \frac{\partial}{\partial y}\right) \cdot \left(M\hat{\chi} + N\hat{j}\right)$$

$$V \cdot F = \left(\frac{1}{\sqrt{3x}} + \frac{1}{\sqrt{3y}} \right) \cdot \left(\frac{1}{\sqrt{1x}} + \frac{1}{\sqrt{3y}} \right)$$
$$= \frac{2M}{3x} + \frac{2M}{3y} = div \hat{F}$$

Hence we also write $div\vec{F} = \vec{\nabla} \cdot \vec{F}$

$$\frac{\partial f B}{\partial X} := Define \text{ vot } \vec{F} \text{ to be}$$

$$\text{vot } \vec{F} = \frac{\partial N}{\partial X} - \frac{\partial M}{\partial y} \quad (f_{x} \vec{F} = M_{x}^{2} + N_{y}^{2})$$

$$\text{Note: vot } \vec{F} = \lim_{e \to 0} \frac{1}{\operatorname{Area}(\overline{D_{E}}(x,y))} \iint_{\overline{D_{E}}(x,y)} (\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}) dA$$

$$= \lim_{e \to 0} \frac{1}{\operatorname{Area}(\overline{D_{E}}(x,y))} \oint_{\overline{D_{E}}(x,y)} \vec{F} \cdot \vec{f} \, dS$$

$$= \lim_{e \to 0} \frac{1}{\operatorname{Area}(\overline{D_{E}}(x,y))} \oint_{\overline{D_{E}}(x,y)} \vec{F} \cdot \vec{f} \, dS$$

$$= \lim_{e \to 0} \frac{1}{\operatorname{Area}(\overline{D_{E}}(x,y))} \oint_{\overline{D_{E}}(x,y)} \vec{F} \cdot \vec{f} \, dS$$

$$= \operatorname{circulation density}$$
Using $\vec{\nabla}$, we can unite
$$\operatorname{Vot} \vec{F} = (\vec{\nabla} \times \vec{F}) \cdot \hat{k}$$
Suice $\vec{F} = M_{x}^{2} + N_{y}^{2} + O_{k}^{2} \qquad \text{multar gero}(m R^{2}, \frac{M = M_{x}(y)}{N = N(x,y)})$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(genumber geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(geno(m R^{2}, \frac{M = M_{x}(y)}{N = N = N(x,y)})$$

$$(geno(m R^{2}, \frac{M = M_{x}(y)}{N = N(x,y)})$$

$$(geno(m R^{2}, \frac{M$$

In these notation, the Green's this can be written as

And Thm 10 can be written as

 $\begin{array}{cccc} \underline{\text{Thun 10}} : & \underline{\mathcal{I}} & \underline{\text{simply-connected}} & \underline{\text{cunnected}}, & \vec{\mathsf{F}} \in \mathsf{C}^{1}, \\ & \underline{\mathsf{Then}} & \vec{\mathsf{F}} = (\underline{\mathsf{unsenvative}} \Leftrightarrow & \underline{\mathsf{curl}} \vec{\mathsf{F}} = \vec{\nabla} \times \vec{\mathsf{F}} = \vec{\mathsf{O}} \end{array} \end{array} \tag{Check}$ $\begin{array}{c} \underline{\mathsf{Note}} : & (\dot{\mathsf{i}}) & \underline{\mathsf{curl}} & \vec{\mathsf{F}} = \vec{\nabla} \times \vec{\mathsf{F}} & \underline{\mathsf{defined}} & \underline{\mathsf{only}} & \underline{\mathsf{in}} & \underline{\mathsf{R}}^{3} & (\neg \mathbf{R}^{2}) \\ & \underline{\mathsf{Note}} : & (\dot{\mathsf{i}}) & \underline{\mathsf{curl}} & \vec{\mathsf{F}} = \vec{\nabla} \cdot \vec{\mathsf{F}} & \underline{\mathsf{defined}} & \underline{\mathsf{only}} & \underline{\mathsf{in}} & \underline{\mathsf{R}}^{3} & (\neg \mathbf{R}^{2}) \\ & (\underline{\mathsf{ii}}) & \underline{\mathsf{but}} & \underline{\mathsf{div}} & \vec{\mathsf{F}} = \vec{\nabla} \cdot \vec{\mathsf{F}} & \underline{\mathsf{can}} & \underline{\mathsf{be}} & \underline{\mathsf{defined}} & \underline{\mathsf{on}} & \underline{\mathsf{R}}^{n} & \underline{\mathsf{fn}} & \underline{\mathsf{ouy}} & \underline{\mathsf{n}} \end{array}$

$$\frac{Def 12'}{divergence} \text{ of } \vec{F} = M_{i}^{\circ} + N_{j}^{\circ} + L_{k}^{\circ} \text{ is defined to be}$$
$$div = \vec{\nabla} \cdot \vec{F} = (\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z}) \cdot (M_{i}^{\circ} + N_{j}^{\circ} + L_{k}^{\circ}) = \frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} + \frac{\partial L}{\partial z}$$

Then one can easily cluck the following facts:
$$(Ex!)$$

(i) $\vec{\nabla} \times (\vec{\nabla} f) = \vec{0}$ (i.e. $curl \vec{\nabla} f = \vec{0}$)
(i) \vec{F} conservative \Rightarrow $curl \vec{F} = \vec{\nabla} \times \vec{F} = \vec{0}$
(ii) $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) = 0$ (i.e. $div(curl \vec{F}) = 0$)
Remark: $\vec{\nabla} \cdot (\vec{\nabla} f) \neq 0$ in general, and $\vec{\tau}$ is called the
Laplacian of f and \vec{v} denoted by
 $\vec{\nabla}^2 f = \vec{\nabla} \cdot (\vec{\nabla} f) = div(\vec{\nabla} f)$
 $= \frac{3f}{3\chi^2} + \frac{3f}{3y^2} + \frac{3f}{3z^2}$

In graduate level, it will be denoted by $\Delta = \vec{\nabla}^2$ or $\Delta = -\vec{\nabla}^2$ The "operator" $\vec{\nabla}^2$ is called the Laplace operator and the equation $\vec{\nabla}^2 f = 0$ is called the <u>Laplace equation</u>. Solutions to the Laplace equation are called <u>harmonic functions</u>.