Summary

JZ1	Γ_{2}
$f(x, y) = \Theta$ "smooth" function on \mathcal{R}_1	f(x,y)=0 is <u>not</u> a "smooth" function on J^2z (θ cannot be extended continuously on the whole J^2z)
$C = x^2 + y^2 = 1$ is <u>not</u> a curve in \mathcal{R}_1 (-1,0) $\in C$, but (-1,0) $\notin \mathcal{R}_1$)	$C : x^2 + y^2 = 1$ is a closed curve in Ω_z
Closed curves <u>cannot</u> circle around the origin \Rightarrow closed curves can be 'deformed' cartinumsly (within \mathcal{R}_{1}) to a point (in \mathcal{R}_{1})	C'encloses the "Ade" ⇒ C' <u>cannot</u> be "deformed " catainously (within R2) to a point (in R2)

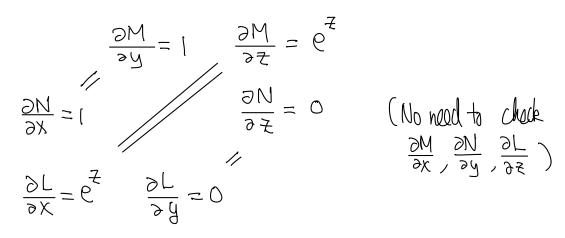
Ref15 A subset SZCIR, n=2023, is called simply-connected if every closed come in R can be <u>contracted</u> to a point in I without ever baring R.

(contracted - deformed containonaly)

eg 47 : let
$$T \equiv (\mathbb{R}^3 \pmod{\text{aud singly-connected}})$$

Let $\vec{F} = M\vec{i} + N\vec{j} + L\vec{k}$
 $= (Y + e^{z})\vec{i} + (X + 1)\vec{j} + (1 + X e^{z})\vec{k}.$
Fund the potential function f of \vec{F} , i.e. $\vec{\nabla}f = \vec{F}$.
Soly: That \vec{v} , we want to solve
 $\frac{\partial f}{\partial X} = M, \quad \frac{\partial f}{\partial y} = N, \quad \frac{\partial f}{\partial z} = L$

Checking M, N, L satisfy the system of PDEs in the Corto T/m?



Thm 10 => existence of potential function f.

To find f explicitly $\frac{\Im f}{\Im x} = M = y + e^{z}$ $f = \int (y + e^{z}) dx = x(y + e^{z}) + "const.in x"$ $= x(y + e^{z}) + g(y, z) \text{ for some function } g(y, z)$ Then take $\frac{\Im}{\Im y}$: $N = X + I = \frac{\Im f}{\Im y} = x + \frac{\Im g}{\Im y}$

 $\frac{\partial g}{\partial q} = 1$ \Rightarrow $q = \int dy = y + "const. in y"$ \Rightarrow = y + h(z) for some function of z $f = X(y + e^{z}) + y + \theta(z)$ ۱ - 、 Then take $\frac{\partial}{\partial z}$: $L = 1 + Xe^2 = \frac{\partial f}{\partial z} = Xe^2 + f_1(z)$ \Rightarrow $f_{(z)}=1$ \Rightarrow $f_{(z)}=z+const.$ $f(x,y,z) = X(y+e^z) + y + z + c$, where c = constantHenro are potential functions of F.X In practice: $(y+e^{z})\hat{i} + (x+i)\hat{j} + (Hxe^{z})\hat{k}$ $\Leftrightarrow (y + e^z) dx + (x + 1) dy + (1 + x e^z) dz$ = $(y dx + x dy) + (e^{z} dx + x e^{z}) dz + dy + dz$ $= d(xy) + d(xe^{z}) + d(y+z)$ $= d(Xy + Xe^{2} + y + z)$