Conservative Vector Field

Pet 14: let JZ CIR^h, n=2023, le open. A vecta field
$$\overrightarrow{F}$$

defined on SZ is said to be conservative if
 $S_{ct} \overrightarrow{F} \cdot \overrightarrow{fds} \left(=\int_{ct} \overrightarrow{F} \cdot d\overrightarrow{F}\right)$ along an averted curve ct in JZ
depends only on the starting point and end point of ct .
Note: This is usually referred as "path independent".
i.g. If $C_1 \ge C_2$ are criterized curves with the same
starting point A and end point B,
then
 $S_{ct} \overrightarrow{F} \cdot \overrightarrow{fds} = \int_{ct_2} \overrightarrow{F} \cdot \overrightarrow{fds}$
(so the value only depends on the points $A \ge B$ (a directur))
Notation: If $\overrightarrow{F} \ge i$ conservative, we sometimes write
 $\int_{A}^{B} \overrightarrow{F} \cdot \overrightarrow{fds}$ to denote the common value of
 $\int_{ct} \overrightarrow{F} \cdot \overrightarrow{fds}$ to denote the common value of
 $\int_{ct} \overrightarrow{F} \cdot \overrightarrow{fds}$ to denote the common value of
 $\int_{ct} \overrightarrow{F} \cdot \overrightarrow{fds}$ dong any oriented curve Ct_1

eg 41:
$$\vec{F} = \hat{\chi}$$
 on IR^2
C: $\vec{F}(t) = \chi(t)\hat{i} + y(t)\hat{j}$, $a \le t \le b$
Then $\int_C \vec{F} \cdot \hat{T} dS = \int_C \vec{F} \cdot d\vec{F}$
 $= \int_a^b \hat{i} \cdot (\chi(a)\hat{i} + y(a)\hat{j}) dt$
 $= \int_a^b \chi(t) dt$
 $= \chi(b) - \chi(a)$
 χ -conditates at $\vec{F}(b) = \vec{F}(a)$ respectively
 $\cdot \cdot \int_C \vec{F} \cdot \hat{f} dS$ depends only on the starting point $\vec{F}(a) = end$
point $\vec{F}(b) \Rightarrow \vec{F}$ is conservative. $\overset{\times}{\times}$
(Note: $\vec{F} = \vec{\nabla} f$ where $f(x,y) = \chi$)
Thms! (Fundamental Theorem of fine Integral)
(et f be a C! function on an open set $SC \subset IR^n$, $h = 2 \circ 3$,
and $\vec{F} = \vec{\nabla} f$ be the gradient vector field of f . Then
 f any piecewise smooth aiented curve $C = mSC$ with
showing pait A and and point B ,
 $\int_C \vec{F} \cdot \vec{f} dS = f(B) - f(A)$

(then
$$A_0 = A$$
, $A_k = B$)

Then part I implies

$$S_c \vec{F} \cdot \vec{f} \, ds = S_{\vec{F}} \cdot \vec{F} \cdot \vec{f} \, ds$$

Is the converse of Thin & correct? Yes (under a further condition) on the domain S2

Thm⁹ Let J2 ⊂ IRⁿ, n=2 or 3, le open and (path) connected
F is a continuous vecta field on J2. Then the
following are equivalent.
(a) ∃ a c¹ function f: R > R such that
F = Jf
(b)
$$\int_{C} \vec{F} \cdot d\vec{r} = 0$$
 along any closed curve C on J2.
(c) F is conservative.

Remarks:(1) The function
$$f$$
 in (a) of Thm 9 is called the
potential function of \vec{F} . It is unique up to
an additive constant:
 $\vec{\nabla}(f+c) = \vec{F}$, \forall const. c.

(2)
$$\vec{F} = M\hat{i} + N\hat{j} + L\hat{k} = \vec{\nabla}f \iff Mdx + Ndy + Ldz = df$$

(Some for 2-duin)

In this case, Mdx+Ndy+Ldz (or Mdx+Ndy in dim.2) is called an <u>exact differential form</u>.

$$\frac{Pf}{f} : "(a) \Rightarrow (b)''$$
If f is C' and $\vec{F} = \vec{\nabla}f$ and
 $\vec{F} : [a, b] \rightarrow \Omega$ parametrizes the closed conve C
then $\vec{F}(a) = \vec{F}(b)$ denote A
Fundamental Thus of Line Integral \Rightarrow
 $f_{C} = \vec{F} \cdot d\vec{r} = f(\vec{F}(b)) - f(\vec{F}(a)) = f(A) - f(A) = 0$

"(b) ⇒ (c)" Suppose C, & Cz are mented curves with starting point A and end point B.

Then
$$C_1 - C_2$$
 (i.e. $C_1 \cup (-C_2)$)
is an oriented closed curve
(with starting point = A = end point) A
Then by part (6)
 $O = \oint_{C_1-C_2} \vec{F} \cdot d\vec{r} = \int_{C_1} \vec{F} \cdot d\vec{r} + \int_{C_2} \vec{F} \cdot d\vec{r}$
 $= \int_{C_1} \vec{F} \cdot d\vec{r} - \int_{C_2} \vec{F} \cdot d\vec{r}$
Since $C_1 \ge C_2$ are arbitrary, \vec{F} is conservative

"(c) \Rightarrow (it requires us to solve a system of PDE.) (to be control)