Vector Fields

In component form:

$$R^{2} = \vec{F}(x,y) = M(x,y)\hat{i} + N(x,y)\hat{j}$$

$$R^{3} = \vec{F}(x,y,z) = M(x,y,z)\hat{i} + N(x,y,z)\hat{j} + L(x,y,z)\hat{k}$$
where M, N, L are functions on D called the components
of \vec{F} .

 $\underline{eg_{36}} \quad (\underline{fradient vector field of a function})$ $(i) \quad f(x,y) = \frac{1}{2}(x^2 + y^2)$ $\overline{\nabla}f(x,y) \stackrel{dof}{=} (\underline{\partial}f, \underline{\partial}f) = (x,y) = xi + yj = \overline{r}(x,y)$ $\underline{position vector field}.$

(ij)
$$f(x,y,z) = X$$

 $\overline{\nabla}f(x,y,z) \stackrel{\text{def}}{=} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = (1,0,0) = \hat{\lambda}$
(a constant vector field)

$$\underbrace{eg37}_{k} (\text{Vector field along a curve})$$
Let C be a curve in \mathbb{R}^2 parametrised by
$$\overrightarrow{T} = [a, b] \rightarrow \mathbb{R}^2$$

$$\xrightarrow{T} = [a, b] \rightarrow \mathbb{R}^2$$

$$\xrightarrow{T} \to (X(t), y(t)) = \overrightarrow{r}(t)$$

$$\underbrace{Fas}_{k} = \underbrace{\overrightarrow{r}(t)}_{||\overrightarrow{r}(t)||}$$

$$\underbrace{Fas}_{k} = \underbrace{aaa}_{k} = \underbrace{aaaa}_{k}$$

$$\underbrace{Fas}_{k} = \underbrace{aaaa}_{k} = \underbrace{aaaa}_{k}$$

$$\underbrace{Fas}_{k} = \underbrace{Fas}_{k}$$

$$\underbrace{Fas}_{k}$$

$$\underbrace{Fas}_{k} = \underbrace{Fas}_{k}$$

$$\underbrace{Fas}_$$

 $\frac{\text{Remark}}{\text{If we use } ds = ||\overline{r'(t)}|| dt, \text{ then}$

$$\hat{T} = \frac{\vec{r}(t)}{\|\vec{r}(t)\|} = \frac{\frac{d\vec{r}}{dt}}{\frac{ds}{dt}} = \frac{d\vec{r}}{ds} \quad (by \text{ Chain rule})$$

$$(af s is a function of t)$$

where "arc-lungth s"
$$\vec{v}$$
 defined by
 $S(t) = \int_{t_0}^{t} ||\vec{v}'(t)|| dt$, (up to an additive constant)

A parametrization of a unit
$$C$$
 by arc-length S
is called arc-length parametrization:
 $\overline{\gamma}(S) = arc-length parametrization $\Rightarrow \|\frac{d\overline{\gamma}(S)}{dS}\| = 1$$

Def 11 A vector field is defined to be
$$\frac{\text{continuous}}{\frac{\text{differentiable}}{\frac{\text{ch}}{2}}$$
 of the component functions are.

$$\frac{eq38}{F(X,y)} = F(X,y) = X\hat{i} + y\hat{j} \quad \& \quad C^{\infty} \quad (\text{position vector})$$

$$\frac{F(X,y)}{F(X,y)} = \frac{-y\hat{i} + X\hat{j}}{\sqrt{X^2 + y^2}} \quad \& \quad \text{not} \quad (\text{antiunon in } \mathbb{R}^2)$$

$$(\text{but cartinuon in } \mathbb{R}^2 \cdot \frac{3}{9}, 0, 0) \in \mathcal{F}$$

$$\begin{split} & [\underbrace{ine \ integral \ of \ wecton \ field} \\ & \underline{Pef12}: \quad lot \ C \ be a \ couve \ with \ \vec{r}(t_{2} \neq 0, \ \forall t_{2}. \ Define \ the \\ & \underline{Parametrization} \ \vec{r}(t_{2}) \ with \ \vec{r}(t_{2} \neq 0, \ \forall t_{2}. \ Define \ the \\ & \underline{Parametrization} \ \vec{r}(t_{2}) \ with \ \vec{r}(t_{2} \neq 0, \ \forall t_{2}. \ Define \ the \\ & \underline{Parametrization} \ \vec{r}(t_{2}) \ with \ \vec{r}(t_{2} \neq 0, \ \forall t_{2}. \ Define \ the \\ & \underline{Parametrization} \ \vec{r}(t_{2}) \ with \ \vec{r}(t_{2} \neq 0, \ \forall t_{2}. \ Define \ the \\ & \underline{Parametrization} \ \vec{r}(t_{2}) \ \vec{r}($$

and
$$\int_{C} \vec{F} \cdot \vec{T} \, dS = \int_{C} \vec{F} \cdot d\vec{T}$$

$$eg_{3s} : \vec{F}(X, y, z) = z\vec{i} + xy\vec{j} - y^{2}\vec{k}$$

$$C : \vec{F}(x) = z\vec{i} + x\vec{j} + J\vec{x}\vec{k}, \quad o \le t \le 1$$

 $\underline{Som} = d\vec{r} = (zt\vec{\lambda} + j + \frac{1}{2\sqrt{t}}\hat{k})dt$

$$\begin{aligned} & \int_{C} \vec{F} \cdot \vec{T} dS = \int_{C} \vec{F} \cdot d\vec{r} \\ &= \int_{C} (Z(t)\vec{\lambda} + \chi(t)y(t)\vec{j} - y(t)\vec{h}) \cdot d\vec{r} \\ &= \int_{C}^{1} (I\vec{t}\vec{\lambda} + t^{3}\vec{j} - y^{2}\vec{k}) \cdot (zt\vec{i} + \vec{j} + \frac{1}{2\sqrt{t}}\vec{h}) dt \\ &= \int_{0}^{1} (I\vec{t}\vec{\lambda} + t^{3}\vec{j} - y^{2}\vec{k}) \cdot (zt\vec{i} + \vec{j} + \frac{1}{2\sqrt{t}}\vec{h}) dt \end{aligned}$$

In components from:
Line integral of
$$\vec{F} = M\vec{i} + N\vec{j}$$
 along
 $C : \vec{r}(t) = g(t)\vec{i} + h(t)\vec{j}$

can be expressed as

$$\int_{C} \vec{F} \cdot \vec{f} \, ds = \int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} (\vec{F} \cdot \frac{d\vec{r}}{dt}) dt$$
$$= \int_{a}^{b} (Mg' + Nf') dt$$

(mue explicitly:
$$\int_{a}^{b} [M(g(t), h(t))g(t) + N(g(t), h(t))h(t)]dt)$$

Note that,
$$y = g(x)$$

 $y = f_1(t)$
 $\Rightarrow \int dx = g'(x) dt$
 $\Rightarrow \int dy = f_1'(t) dt$

$$\int_{C} \vec{F} \cdot \vec{f} \, dS = \int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} M \, dx + N \, dy$$

Subsiditly, for 3-dim

$$\int_{C} \vec{F} \cdot \vec{T} dS = \int_{C} \vec{F} \cdot d\vec{F} = \int_{a}^{b} M dx + N dy + L dz$$

$$(for \vec{F} = M_{a}^{T} + N_{j}^{T} + L\vec{k})$$
Another way to justify the notation:

$$\vec{F} = (X, Y, z) \quad \text{the paintion vector}$$

$$\Rightarrow \quad d\vec{F} = (dx, dy, dz) \quad (natural notation)$$
Then

$$\int_{C} \vec{F} \cdot \vec{T} dS = \int_{C} \vec{F} \cdot d\vec{r} = \int_{C} (M_{j}N_{j}L) \cdot (dx, dy, dz)$$

$$= \int_{C} M dx + N dy + L dz.$$

$$\frac{\log 39}{2}: \text{Evaluate } I = \int_{C} -y \, dx + z \, dy + 2x \, dz$$
where $C: F(t) = \cot i + \sin t \, j + t \, k$ (ostszm)
 $= (\cot , \sin t, t)$

$$\frac{\text{Sohn}:}{I} = \int_{C} (-\sin t) d(\cot) + t \, d(\operatorname{suit}) + 2 \cot dt$$

$$= \int_{C}^{2\pi} (\sin^{2} t + t \cot t + 2 \cot t) \, dt$$

$$= \cdots = \pi$$
 (check!) ×

 $(d\vec{r} = (-sint, ost, 1)dt \in \vec{r}(t) = (-sint, ost, 1))$

M	<u>ote</u> :	\mathbf{S}			
_	sungle	ND	Yes	NO	Yes
	closed	Yes	No	NO	Tes

Famula for
$$\hat{n}$$
 (with the parametrization $\hat{F}(t) = X(t)\hat{i} + y(t)\hat{j}$)
Recall $\hat{T} = \frac{\hat{F}(t)}{||\hat{F}(t)||} = \frac{x(t)\hat{i} + y(t)\hat{j}}{||\hat{F}(t)||}$
(in an - lungth parametrization = $\hat{T} = \frac{d\hat{T}}{ds} = \frac{dx}{ds}\hat{i} + \frac{dy}{ds}\hat{j}$)
Anti-clockwise:
 $\hat{n} = \hat{T} \times \hat{k} = \begin{vmatrix} \hat{x} & \hat{j} & \hat{k} \\ \frac{x'}{||\hat{F}'||} & \frac{y'}{||\hat{F}'||} & 0 \\ 0 & 0 & 1 \end{vmatrix}$
 $\Rightarrow \hat{n} = \frac{y(t)\hat{x} - x(t)\hat{j}}{||\hat{F}'|t|||} (\alpha - \hat{n} = \frac{dy}{ds}\hat{i} - \frac{dx}{ds}\hat{j})$
Clockwise: $\hat{n} = -\frac{y'(t)\hat{i} + x'(t)\hat{j}}{||\hat{F}'|t|||} (\alpha - \hat{n} = \frac{dy}{ds}\hat{i} - \frac{dx}{ds}\hat{j})$
Elux of \vec{F} across $\hat{C} = \frac{def}{ds} \int_{C} \vec{F} \cdot \hat{n} ds$ (and $\hat{f}(t) = x(t)\hat{i} + y(t)\hat{j}$ $\hat{g} = \frac{auti-clockwise}{autochization} = \frac{dt}{ds}\hat{j}$
Then

Flux of
$$\vec{F}$$
 across \vec{C}
= $(M\hat{i}+N\hat{j})\cdot(\frac{dy}{ds}\hat{i}-\frac{dx}{ds}\hat{j})ds$
= $(Mdy - Ndx)$

$$\frac{eg}{6} + 0: Let \vec{F} = (x-y)\hat{i} + x\hat{j}$$

$$C : x^{2}+y^{2} = 1$$
Find the flow (auti-clochnisely) along C and
flux across C.
Soln: Let $\vec{F}(t) = (0 \text{ st } \hat{i} + a \text{ int } \hat{j}, 0 \le t \le 2\pi)$
Note: correct orientation - autificant
Then $flow = \oint_{C} \vec{F} \cdot \hat{T} ds$

$$= \oint_{C} \vec{F} \cdot d\hat{r} (= \oint_{C} M dx + N dy)$$

$$= \int_{0}^{2\pi} [(cost - autif)\hat{i} + cost\hat{j}][-aut\hat{i} + (cost\hat{j}]] dt$$

$$= \int_{0}^{2\pi} [aut(au \pm - cost) + cos^{2}t] dt$$

$$= \dots = 2\pi \qquad (check!)$$
flux = $\int_{0}^{2\pi} [cost - aut +)d(aut) - (aut d cost)$

$$= \int_{0}^{2\pi} [cost - aut +)d(aut) - (aut d cost)$$

$$= \int_{0}^{2\pi} [cost - aut +)d(aut) + aut cost] dt$$

$$= \int_{0}^{2\pi} [cost - aut +)d(aut) + aut cost] dt$$

• If f is a scalar function

$$\int_C f ds = \int_{-C} f ds$$
 as "ds" is not oriented,
 $\int_C f ds = \int_{-C} f ds$ just "length"

• If
$$\vec{F}$$
 is a vecta field
flow $\int_{C} \vec{F} \cdot \hat{T} dS = -\int_{-C} \vec{F} \cdot \hat{T} dS$
this \hat{T} is the " \hat{T} funct"

More precise formula : $\int_{C} \vec{F} \cdot \hat{T}_{C} \, dS = - \int_{-C} \vec{F} \cdot \hat{T}_{-C} \, dS$

· But fa flux

 $\oint_{\mathcal{C}} \vec{\mathsf{F}} \cdot \hat{\mathsf{n}} d\mathsf{S} = \oint_{\mathcal{C}} \vec{\mathsf{F}} \cdot \hat{\mathsf{n}} d\mathsf{S}$ $\hat{\mathsf{n}}$ always outward

<u>Summary:</u>

<u>scalar</u>	Sit des indep. of crientation	ds trave no direction
<u>vecta È</u> Flow	$\int_{\mathcal{C}} \vec{F} \cdot \vec{F} ds$ depends on mentation	7 depends on direction
flux	Sc F. nds indep. of mentation	n always outward