General dimensions
Qiven n+k variables, k equations

$$(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{k})$$
 n+k variables
 $\begin{cases}
F_{1}(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{k}) = c_{k} \\
F_{k}(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{k}) = c_{k}
\end{cases}$

expect: Y1, ..., Yk can be solved as functions of X1, ..., Xn. (Ex: Try to write down the system from implicit differentiation)

$$\begin{array}{l} \underline{\operatorname{Thm}} & (\underline{\operatorname{Inplicit}} & \underline{\operatorname{Function}} & \underline{\operatorname{Thm}} & (\underline{\operatorname{Inplicit}} & \underline{\operatorname{Function}} & \underline{\operatorname{Thm}} & \underline{\operatorname{Inplicit}} & \underline{\operatorname{Function}} & \underline{\operatorname{Function}} & \underline{\operatorname{Firs}} & \underline{\operatorname{Firs}}$$

(Pf: in MATH3060)

$$\underbrace{eq}: \text{ If } \vec{F} \ \vec{b} \ actually \ linear:
$$\begin{cases} F_{i}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{k}) = C_{1i}(x_{1} + \dots + C_{in}x_{n} + d_{1i}y_{1} + \dots + d_{1k}y_{k}) \\ \vdots \\ F_{k}(x_{1}, \dots, x_{n}, y_{1}, \dots, y_{k}) = C_{ki}(x_{1} + \dots + C_{kn}x_{n} + d_{ki}y_{1} + \dots + d_{kk}y_{k}) \end{cases}$$$$

Then
$$\vec{F}(\vec{x},\vec{y}) = \vec{c}$$
 can be written

$$\begin{pmatrix} C_{11}\cdots C_{1n} \\ \vdots & \vdots \\ C_{k1}\cdots C_{kn} \end{pmatrix} \begin{pmatrix} X_{1} \\ \vdots \\ X_{n} \end{pmatrix} + \begin{pmatrix} d_{11}\cdots d_{1k} \\ \vdots & \vdots \\ d_{kl}\cdots d_{kk} \end{pmatrix} \begin{pmatrix} Y_{1} \\ \vdots \\ Y_{k} \end{pmatrix} = \begin{pmatrix} C_{1} \\ \vdots \\ C_{k} \end{pmatrix}$$

And
$$\left(\frac{\partial F_{i}}{\partial y_{j}}\right)_{1 \le i, j \le n} = \begin{pmatrix} \frac{\partial F_{1}}{\partial y_{1}} & \dots & \frac{\partial F_{l}}{\partial y_{k}} \\ \vdots & \vdots \\ \frac{\partial F_{k}}{\partial y_{1}} & \dots & \frac{\partial F_{k}}{\partial y_{k}} \end{pmatrix} = \begin{pmatrix} d_{11} & \dots & d_{1k} \\ \vdots & \vdots \\ d_{k1} & \dots & d_{kk} \end{pmatrix}$$

$$\begin{split} & If \left(\frac{\partial F_{i}}{\partial y_{j}}\right) = \left(d_{ij}\right) \quad \text{is invatible} \qquad \left(ie. det\left(d_{ij}\right) \neq 0\right), \\ & \text{then} \qquad \left(\begin{array}{c} y_{i}\\ \vdots\\ y_{k}\end{array}\right) = \left(\begin{array}{c} d_{ii}\cdots d_{ik}\\ \vdots\\ d_{ki}\cdots d_{ik}\end{array}\right)^{-1} \left[-\left(\begin{array}{c} C_{11}\cdots C_{1n}\\ \vdots\\ C_{ki}\end{array}\right) \left(\begin{array}{c} x_{i}\\ \vdots\\ C_{ki}\end{array}\right) + \left(\begin{array}{c} C_{i}\\ \vdots\\ C_{k}\end{array}\right) \right] \\ & = \overrightarrow{\Phi}(\vec{X}) \qquad \text{is the required implicit function} \\ & (\text{ some } \vec{\varphi} \text{ fn all } (\vec{a}, \vec{b}) \text{ with } \vec{F}(\vec{a}, \vec{b}) = \vec{c}, \text{ & fore } U = \mathbb{R}^{n}, V = \mathbb{R}^{k}) \\ & Uearly \\ & \left(\frac{\partial P_{i}}{\partial X_{l}}\right)_{k \times n} = \left(\frac{\partial Y_{i}}{\partial X_{l}}\right) = - \left(\begin{array}{c} d_{i1}\cdots d_{ik}\\ \vdots\\ d_{ki}\cdots d_{kk}\end{array}\right)^{-1} \left(\begin{array}{c} C_{11}\cdots C_{in}\\ \vdots\\ C_{ki}\cdots C_{kn}\end{array}\right) \xrightarrow{k \times n} \\ & \end{array}$$

Special Case (A):
$$k = i$$
 (i constraint)
 $F: I \subset \mathbb{R}^{n+1} \rightarrow \mathbb{R}$
 $F(\vec{x}, \vec{y}) = F(x_{1}, ..., x_{n}, y) = c$ (i constraint)
Supplie $\vec{a} = (a_{1}, ..., a_{n}) \in \mathbb{R}^{n}$, $b \in \mathbb{R}$ s.t.
 $F(a_{1}, ..., a_{n}, b) = c$
 $IFT: If \frac{2F}{2Y}(a_{1}, ..., a_{n}, b) \neq 0$,
then $\exists \cup open in \mathbb{R}^{n}$ s.t. $(a_{1}, ..., a_{n}) \in U$ and
 $\bigvee open in \mathbb{R}$ s.t. $b \in V$
and \exists unique $C^{1}(q: U \rightarrow V s, t)$.
 $P(a_{1}, ..., a_{n}) = b \in \mathbb{R}$
 $F(x_{1}, ..., x_{n}, \varphi(x_{1}, ..., x_{n})) = (\neg \forall (x_{1}, ..., x_{n}) \in U$
 $(ie. y = \varphi(x_{1}, ..., x_{n}) \text{ solves the constraint } F(x_{1}, ..., x_{n}, y) = c$
 $"near" (a_{1}, ..., a_{n}, b)$

Moreover, $\frac{\partial \varphi}{\partial x_i}$ can be calculated using implicit differentiation.

In e	gZ:	$x^{2}+y^{2}+z^{2}=2$	Solve	₹ <i>=-</i> ₹(xy)		
) (R	(x,y,Z) 2 ³ notatii	ĨM	g	(×1,×2 Venoral	,y) notation	, (thin"y" is not the "y" in the other side
G(X,Y) ne	$z = X^{2}$	y	F(XI) Z	(2,5) = = (a _{1,} a2)=	Xi+X2+ <u>(</u> =(0,1),	y ² = c b=1	(< = 2)
<u>29</u> (· = (ارارو	2 ‡0	<u>ƏF</u> Əy	(a,,az,b)=2 ŧ	0	
By T $\exists z$ s,t. $\int f$ $x^{1}t$	$FT = \neq (\times, y)$ $\int g(x, y) = \neq$ $\int g(x, y) = \neq$ $f(x, y) = f(x, y)$) "near" (0,1) Z(X,Y)) = 2 (0,1) = 1 ()) ² =2	By I E s.t.	FT $y = \varphi(x_{1})$ $F(x_{1})$ $x_{1}^{2} + x_{2}^{2} + \frac{1}{2}$,Xz> "νε ,Xz, Φ(x Φ(Q1,Q2? Τ _Φ (- (Ψ(X1,X2)	ar' (a (j, x2)) = () = 6 (0,1) = ()) ² = ((طرحا) = C (C=Z)
<u>55</u> 27	$\frac{\partial z}{\partial y}$ (1)	u le computed	<u>کل</u> الکو	<u>, 2φ</u>	cau ke	computed	l
by	implicit a	lifferentiation	by	implicit	differen	tiation	

$$\frac{\text{Special caua(B)}}{\vec{F}: I2 \subset \mathbb{R}^{1+2}} \longrightarrow \mathbb{R}^{2}$$

$$\vec{F}: I2 \subset \mathbb{R}^{1+2} \longrightarrow \mathbb{R}^{2}$$

$$\vec{F}(x, y_{1}, y_{2}) = \begin{bmatrix} F_{1}(x, y_{1}, y_{2}) \\ F_{2}(x, y_{1}, y_{2}) \end{bmatrix} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \vec{c}$$

$$\text{Suppose (a, b_{1}, b_{2}) \text{ satisfies the caustraints } \vec{F}(a, b_{2}, b_{2}) = \vec{c},$$

$$\text{Hen IFT means:}$$

$$\frac{i}{4} \begin{bmatrix} \frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\ \frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}} \end{bmatrix} (a, b_{1}, b_{2}) \quad i_{1} \text{ unediffe} \quad (i_{2} \text{ det} \pm 0)$$

$$\text{then IFT means:}$$

$$\text{Hen I} y_{1} = q(x) \quad \text{s } y_{2} = q_{2}(x) \quad \text{"near" (a, b_{2}, b_{2})}$$

$$\text{solving the constraints (Isrally)}$$

$$\int F_{1}(x, q_{1}(x), q_{2}(x)) = c_{1}$$

$$\int F_{2}(x, q_{1}(x), q_{2}(x)) = (c_{2})$$

$$\frac{q}{q_{2}(a) = b_{2}}$$

$\underline{Q3} \qquad \qquad$	olve for $Y = Y(x)$, $z = Z(x)$?				
(X+Z = (noar (0,1,1)				
$(x, Y, Z) \leftarrow \mathbb{R}^3$ notation) (X, Y1, Y2) General Notation				
$g(x,y,z) = x^2 + y^2 + z^2 = 2$ $f_{x}(x,y,z) = x + z = 1$ near $(0, 1, 1)$	$\begin{cases} F_{1}(X, y_{1}, y_{2}) = X^{2} + y_{1}^{2} + y_{2}^{2} = C_{1} (C_{1} = 2) \\ F_{2}(X, y_{1}, y_{2}) = X + y_{2} = C_{2} (C_{2} = 1) \\ q = 0 \tilde{b} = (b_{1}, b_{2}) = (I_{1}I) \tilde{c} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} = \begin{bmatrix} z \\ c_{1} \end{bmatrix}$				
$\begin{pmatrix} z & z \\ z $	$\begin{pmatrix} \frac{\partial F_{1}}{\partial y_{1}} & \frac{\partial F_{1}}{\partial y_{2}} \\ \frac{\partial F_{2}}{\partial y_{1}} & \frac{\partial F_{2}}{\partial y_{2}} \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$ $= \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ $\frac{\text{invertible}}{dst = 2 \neq 0}$				
By IFT $\exists y=y(x), z=z(x) "yoay"$ (0, 1, 1) s.t $\int g(x, y(x), z(x)) = 2$ $\int f_{1}(x, y(x), z(x)) = $ $\int y(0) = (\qquad (y_{0})=\sqrt{2-x^{2}(x^{5})})$ $\int z(0) = (\qquad (y_{0})=\sqrt{2-x^{2}(x^{5})})$ $(x^{2}+y_{1}(x)+z_{1}(x)=2 & x+z(x)=()$	By IFT, $\exists y_{1} = \varphi_{1}(x), y_{2} = \varphi_{2}(x)$ "Mar" $(a, b_{1}, b_{2}) = x_{1}$. $\begin{cases} F_{1}(x, \varphi_{1}(x), \varphi_{2}(x)) = C_{1} \\ F_{2}(x, \varphi_{1}(x), \varphi_{2}(x)) = C_{2} \end{cases}$ $\begin{cases} \varphi_{1}(a) = b_{1} \\ \varphi_{2}(a) = b_{2} \end{cases}$				
<u>Remark</u> : $\frac{dy}{dx}$, $\frac{dz}{dx} \Big _{x=0}$ can be	$\frac{\text{Remark}}{dx}; \frac{d\varphi_1}{dx}, \frac{d\varphi_2}{dx} \Big _{x=q} \text{can be}$				
calculated by implicit differentiation.	calculated by implicit differentiation.				

eg: Casidler the constraints

$$\begin{cases} X \neq + \dim(Y \neq -X^{2}) = B \\ X + 4Y + 3 \neq = 1B \\ (2, 1, 4) \text{ is a solution.} \\ Can we solve 2 of the variables as functions of the remaining variable?
Solur:
$$\vec{F}(X,Y, \neq) = \begin{bmatrix} F_{1}(X,Y, \neq) \\ F_{2}(X,Y, \neq) \end{bmatrix} = \begin{bmatrix} X \neq + A \tilde{u} (Y \neq -X^{2}) \\ X + 4Y + 3 \neq \end{bmatrix} \\ \vec{P} \vec{F} = \begin{bmatrix} \frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} & \frac{\partial F_{1}}{\partial \chi} \\ \frac{\partial F_{2}}{\partial Y} & \frac{\partial F_{2}}{\partial \chi} \end{bmatrix} \\ = \begin{bmatrix} z - 2X(\partial B(Y \neq -X^{2}) & z(\partial C(Y \neq -X^{2}) \\ X + 4Y + 3 \neq \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix} \\ \vec{P} \vec{F}(Z, 1, 4) = \vec{P}(Z, 1, 4) =$$$$

$$TFT \Rightarrow x, y \text{ can be solved as (diff.) functions}$$

$$x = x(z) \ v = y(z)$$
of z near (z,1,4)
$$x, z \text{ can be solved as (diff.) functions}$$

$$x = x(y) \ v = z = z(y)$$
of y near (z,1,4)

<u>No conclueion</u> on whether y, z can be solved as (diff.) functions of x near (2,1,7).

/ Further analysis for this particular example:
implicit diff.
$$\Rightarrow$$
 if y(x) & \neq (x) exists e diff.
then $\begin{bmatrix} 4 & 3 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} \frac{dy}{dx} \\ \frac{dz}{dx} \end{bmatrix} = -\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ which is a
cutradiction. \Rightarrow y, \neq cannot be solved
as (diff.) functions of x

(Pf: MATH3060)

Romark: $\vec{g} = (\vec{f}|_{U})^{-1}$ is called a <u>local inverse</u> of \vec{f} at \vec{a} . eg: \vec{f} is actually linear: $\begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} c_{11} \cdots c_{1n} \\ \vdots \\ c_{n1} \cdots c_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} + \begin{pmatrix} c_{1} \\ \vdots \\ c_{n} \end{pmatrix}$

$$\begin{aligned} \text{(learly} \quad \vec{f} \text{ is invertible} \Leftrightarrow \begin{pmatrix} C_{11} \cdots C_{1n} \\ \vec{c}_{n1} \cdots \vec{c}_{nn} \end{pmatrix} \xrightarrow{\text{invertible}} \\ \vec{g}(\vec{y}) &= \begin{pmatrix} X_{1} \\ \vdots \\ X_{n} \end{pmatrix} = \begin{pmatrix} C_{11} \cdots C_{1n} \\ \vdots \\ C_{n1} \cdots C_{nn} \end{pmatrix}^{-1} \begin{bmatrix} \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} - \begin{pmatrix} C_{1} \\ \vdots \\ C_{n} \end{pmatrix} \end{bmatrix} = \int_{-1}^{-1} \\ \vec{g}(\vec{y}) &= \int_{-1}^{-1} \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} \cdots \frac{\partial f_{n}}{\partial x_{n}} \\ \vdots \\ \frac{\partial f_{n}}{\partial x_{1}} \cdots \frac{\partial f_{n}}{\partial x_{n}} \end{bmatrix} \cdot \text{ the condition required by} \\ \text{IFT is satisfied,} \end{aligned}$$

$$(\text{ Same as the linear example of Juplicit Function Thm, U=\mathbb{R}^{N}=V)$$

$$D\vec{g} = \begin{pmatrix} \frac{\partial g_{1}}{\partial y_{1}} \cdots \frac{\partial g_{n}}{\partial y_{n}} \\ \vdots \\ \frac{\partial g_{n}}{\partial y_{1}} \cdots \frac{\partial g_{n}}{\partial y_{n}} \\ \vdots \\ \frac{\partial g_{n}}{\partial y_{1}} \cdots \frac{\partial g_{n}}{\partial y_{n}} \end{pmatrix}^{-1} = (D\vec{f})^{-1}$$