
 

A sufficient condition for differentiability
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Gradient and Directional Derivative
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Geometric Meanings of Gradient Tf

At a point I f increases decreases most rapidly

in the direction of Ff la Ff as at a rate

of 11Ffa ill

Idea If f is differentiable at E then

Dutch Jf a I for Haiti

Cauchy Schwarz

Datta I 115ftall Hill

IHall

is 118ftall ElDatta E 117ftalll
t

holds holds

I FIE y Tfios
115ftall 115ftall

Remark Defta canbedefinedforanynectar notnecessary11511 1
and could beO by the same definition

Def ta this flatter fia



Onecan show that

Dota t
Dental if Eto

if 5 0

and that

Dif d Ifta t if f isdifferentiableata
nottrueingeneral if t isnotdifferentiable

eg fix y Fyi at 10,01

Propertiesof Gradient

If f g r IR RR open are differentiable

C is a constant

then

41 J g If I Fg
e JICf CF
3 JCfg gift ffg
J f

985 589 provided g o

g 2

Pf Easily from properties of partial derivatives


