Polar Coordinates in R²

$$P = (x,y) \in IR^{2} \quad \text{can be represented by}$$

$$(root, route)$$
where
$$r = \sqrt{x^{2} + y^{2}} = \text{distance from origin}$$

$$\theta = \text{augle from the positive x-axis to OP}$$

$$\tilde{n} \quad \text{counter-clockwise direction}$$

$$\frac{\text{Ruarks}:}{(1)} (\text{rcord}, \text{raind}) = (\text{rcos}(\Theta + 2k\pi), \text{rain}(\Theta + 2k\pi))$$
for any $k \in \mathbb{Z} = 1 \dots, 27, 10, 1, 2, \dots$
cits For P=(0,0), then $r = 0$
 $1 \text{ Θ is not well-dofined}$
(iii) For our defn, we usually set
 $r \in [0, \infty)$ ($r \ge 0$)
 $0 \in [0, 2\pi)$ ($0 \le 0 < 2\pi$)
But in some book, $r \in R$ (can be nogetine as in Textbook)
 $csee later examples$)
 $\theta \in R$

$$\frac{\text{Remark}}{X(t)} = (rash, rainh) = (kt cost, ktaint) = k(tast, taut)$$

$$\Rightarrow \vec{X}(t) = k(ast - taint, suit + tast) is the taugent orden
at $\vec{X}(t) = k(tast, taint).$

$$((\vec{X}(t), \theta(t)) = (k, 1) is not the taugent vector in $\mathbb{R}^2)$$$$$

eq:
$$r \cos(\theta - \frac{\pi}{4}) = J\overline{2}$$

 $\Rightarrow r (\cos\theta \cos\frac{\pi}{4} + \sin\theta \sin\frac{\pi}{4}) = J\overline{2}$
 $\Rightarrow \frac{r \cos\theta}{J\overline{2}} + \frac{r \sin\theta}{J\overline{2}} = J\overline{2}$
 $\Rightarrow x + y = z$
Negative r
Our convertion is $r \ge 0$.
But sometimes in conversent to allow $r < 0$ by the interpretation
 $(X, y) = (r \cos\theta, r \sin\theta)$
 $= (-|r| \cos\theta, -|r| \sin\theta)$ $(= (|r| (\cos(\theta + \pi), |r| \sin(\theta + \pi)))$
eq: $r = -z, \theta = \frac{\pi}{6}$ $(x, y) = (-z \cos\frac{\pi}{6}, -z \sin\frac{\pi}{6}) = -((\overline{s}, 1) = (-\overline{s}, -1))$
 $\cos(-\frac{\pi}{6}) = -((\overline{s}, 1) = (-\overline{s}, -1))$

$$\underline{OG}: F = 1 - (1 + \varepsilon) (\omega) \theta , \varepsilon > 0$$

$$= 1 - Q(\omega) \theta , \alpha = |+\varepsilon > 1$$

$$\underline{Soh}:$$

$$\underline{Oave 1} F \ge 0$$

$$\Rightarrow 1 - \alpha(\omega) \theta \ge 0 \Rightarrow (\omega) \theta \le \frac{1}{\alpha} < 1$$

$$\frac{1}{\alpha} = \frac{1}{\alpha} + \frac{1}{\alpha}$$

Let $\delta = (00) (\frac{1}{a})$, then θ can only run through the subinterval $[\delta, 2\Pi - \delta]$ (of $[0, 2\Pi]$)

So if we allow rER, then $r = 1 - a \cos \theta$ can be defined for all $\theta \in [0, 2\pi]$ so the curve becomes a curve with <u>self-intersection</u>:

(a= 1+ 2 > 1)

Spherical Conducates

$$P = (X, Y, Z) \in \mathbb{R}^{3}$$
 can be represented by
 $g = distance from origin = \sqrt{x^{2} + y^{2} + Z^{2}}$
 $\Theta = \Theta$ as in cylludrical conductos
 $\Phi = angle from positive Z-axis$
 $to \ \overrightarrow{OP}$.
Remark : $\Phi \in TO, TT$
Fromulator
Fromulator
 $From Here and the partial of the partial of$

 $\frac{Fontulae}{f X = poin \phi (00)}{f Y = poin \phi oin 0}$ $\frac{f Y = poin \phi oin 0}{f Z = p(0) \phi}$

(Tutinial for Egs)

Topological Terminology in
$$\mathbb{R}^{n}$$

 $\boxed{\text{Def}} \cdot \mathbb{B}_{\varepsilon}(\vec{x_{0}}) = \{\vec{x} \in \mathbb{R}^{n} : \|\vec{x} - \vec{x_{0}}\| < \varepsilon\} \text{ is called the}$
 $\underbrace{\text{Open ball}}_{\text{of radius}} \varepsilon \text{ and centered at } \vec{x_{0}}$
 $\cdot \overline{\mathbb{B}_{\varepsilon}(\vec{x_{0}})} = \{\vec{x} \in \mathbb{R}^{n} : \|\vec{x} - \vec{x_{0}}\| \le \varepsilon\} \text{ is called the}$
 $\underbrace{\text{losed ball}}_{\text{of radius}} \varepsilon \text{ and centered at } \vec{x_{0}}$

 $\frac{\text{Remark}}{\text{open disk}} = \text{If } n=2, \quad B_{\varepsilon}(\overline{x_0}), \quad B_{\varepsilon}(\overline{x_0}) \text{ are referred as} \\ \frac{\text{open disk}}{D_{\varepsilon}(\overline{x_0}), \quad D_{\varepsilon}(\overline{x_0})} \text{ and denoted bg} \\ D_{\varepsilon}(\overline{x_0}), \quad D_{\varepsilon}(\overline{x_0}) \text{ in some faxtbooks}. \end{cases}$

UG: $S=\{(x,y)\in\mathbb{R}^2: | < x^2+y^2 \le 4\} \subset \mathbb{R}^2$ A = boundary point C = boundary pointB = interior point D = exterior point E = Opterior point $Int(S)=\{(x,y)\in\mathbb{R}^2: | < x^2+y^2 < 4\}$ $Ext(S)=\{(x,y)\in\mathbb{R}^2: x^2+y^2 < 1\}$ $OS = \{(x,y)\in\mathbb{R}^2: x^2+y^2=1\}$

Def A set
$$S \subset \mathbb{R}^n$$
 is called
(1) open if $\forall \vec{x} \in S$, $\exists \epsilon > 0$ such that $B_{\epsilon}(\vec{x}) \subset S$
(2) closed if $\mathbb{R}^n \setminus S$ is open

$$\frac{\text{Equivalent definition}}{(1) \quad \text{S open} \iff \text{S} = \text{Int}(\text{S})}$$
(z) $\text{S closed} \iff \text{S} = \text{Int}(\text{S}) \cup \partial \text{S}$
(check!)

eq Is
$$S=\{(x,y)\in \mathbb{R}^2: | < x^2+y^2 \le 4\}$$
 open a closed?
Answer: Not open and not closed.