Higher duneusion example eq: q(x,y,z) = Xy + yz + zXthas definite sign for (X, y, z) = (0,0,0)? Answer: NO <u>Solu</u>: Trick: $q(x,y,z) = \frac{1}{4}(x+y) - \frac{1}{4}(x-y) + z(x+y)$ Let $\mathcal{X} = \frac{X+\mathcal{Y}}{2}$, $\mathcal{U} = \frac{X-\mathcal{Y}}{2}$ then $q = \chi^2 - U^2 + Z Z \chi$ $= (\mathcal{U}^{2} + 2\mathcal{U}\mathcal{Z} + \mathcal{Z}^{2}) - \mathcal{Z}^{2} - \mathcal{U}^{2}$ $=(1+2)^{2}-2^{2}-5^{2}$ $= \frac{1}{4} (X + y + 2z)^{2} - \frac{1}{4} (X - y)^{2} - z^{2}$ On the plane X+Y+ZZ=O (i.e. $Z=-\frac{X+Y}{2}$), $q = q(x, y) - \frac{x+y}{2} = -\frac{1}{4}(x-y)^2 - \frac{1}{4}(x+y)^2$ < 0 $f_{0}(x,y,-\frac{x+y}{2}) \neq \vec{0}$ Along the line $\begin{cases} x-y=0 \Rightarrow \\ z=0 \end{cases}$ $Q = Q(X, X, 0) = \frac{1}{4} (X + X + 0)^2 - 0^2 - 0^2 = X^2 > 0,$ ∀ ×≠0, ;e (x,x,0) ≠ Ö $(Together \Rightarrow (0,0,0)$ is a saddle point) ×

Another way to check is consider determinants of submatrix

For each $1 \le k \le N$, consider submatrix H_k given by the upper left kxk entries.

$$\begin{bmatrix} f_{X_1X_1} & \cdots & f_{X_1X_{lk}} & \cdots & f_{X_1X_{lk}} \\ \vdots & \vdots & \vdots \\ f_{X_kX_1} & \cdots & f_{X_kX_{kk}} & \cdots & f_{X_{lk}X_{lk}} \\ \vdots & \vdots & \vdots \\ f_{X_{lk}X_{lk}} & \cdots & f_{X_{lk}X_{lk}} & \cdots & f_{X_{lk}X_{lk}} \end{bmatrix}$$

Then

Hf(
$$\hat{a}$$
) is positive definite \Leftrightarrow det H_k >0, \forall k=1,..., N
Hf(\hat{a}) is nogative definite \Leftrightarrow det H_k {<0, k odd
>0, k even

(z) Diagonal matrix
$$\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_k \end{bmatrix} \Rightarrow H_k = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_k \end{bmatrix}$$

 $\Rightarrow dot H_k = \lambda_1 \cdot \cdot \cdot \lambda_k$.

Lagrange Multipliers (A method for finding extrema under constraints)

eq 1 In previous example of finding global max/min of

$$f(X,y) = X^2 + 2y^2 - X + 3$$
 for $x^2 + y^2 \le 1$, one need to
find (in step 2) the max/min values of
f on the boundary $X^2 + y^2 = 1$. (on $x^2 + y^2 = 1$)
In other words, finding global max/min
of $f(X,y) = X^2 + y^2 = 1$
under constraint $g(X,y) = x^2 + y^2 = 1$

Another typical example:
eg2 Find the point on the parabola
$$x^2 = 4y$$

closest to (1,2).
i.e. Find (global) minimum of
 $f(x,y) = (x-1)^2 + (y-2)^2$ (easier than
 $J(x-u^2 + (y-2)^2)$)

under constraint

$$g(x,y) = x^2 - 4y = 0$$

<u>Remark</u>: In both examples, constraints are expressed as level set. g = c for some constant c.

•

The (Lagrange Multipliers)
let
$$f, g; \Omega \rightarrow \mathbb{R}$$
 be C¹ functions, $(\Omega \in \mathbb{R}^n \text{ open })$
 $\{\cdot S = \overline{g}^{\dagger}(c) = \{x \in \Omega : g(x) = c\}$ be a level set of g
Suppose $\{\cdot \vec{a} \in S \text{ is a local extremum of } f \text{ rectricted to } S$
 $(ie. under the constraint $g = c$)
 $\cdot \sqrt{g}(\vec{a}) \neq \vec{o}$
Then $\{\cdot \sqrt{g}(\vec{a}) = \lambda \sqrt{g}(\vec{a})\}$ for some $\lambda \in \mathbb{R}$
 $\{\cdot g(\vec{a}) = c$
where λ is called a Lagrange Multiplier
(Pf: Omitted)
Idea: $f(\vec{r}(t))$ has an
local extreme at $t=0$,
 $corresponding to $\vec{a} = \vec{r}(o)$
 $f(\vec{r}(o)) = f(\vec{a}) \stackrel{>}{\leq} f(\vec{r}(t)), \forall t$.
 $\Rightarrow O = \frac{d}{dt}|_{t=0} f(\vec{r}(t)) = \sqrt{f(\vec{r}(o))} \cdot \vec{r}(o)$
Since it is true for all conversion S passing thro. \vec{a} ,
 $\Rightarrow \sqrt{f(\vec{a})}$ purpendicular to $S = \overline{f}(c)$ at \vec{a} .$$

$$\Rightarrow \overline{\nabla}f(\overline{\alpha}) \text{ is normal to } S \Rightarrow \overline{\nabla}f(\overline{\alpha}) // \overline{\nabla}g(\overline{\alpha})$$

$$\therefore \overline{\nabla}f(\overline{\alpha}) = \lambda \overline{\nabla}g(\overline{\alpha}) \text{ for some } \lambda \in \mathbb{R}$$

$$\xrightarrow{\times}$$

$$\frac{\text{Reduction to unconstrainted problem} (By Lagrange Multiplier)}{Finding extrema of $f(\overline{x})$ with constraint $g(\overline{x}) = c$

$$\widehat{\Pi}$$
Finding extrema of $F(\overline{x}, \lambda) = f(\overline{x}) - \lambda (g(\overline{x}) - c)$

$$\text{without constraint}$$

$$(\text{but more variables : adding } \lambda \text{ as a new variable})$$$$

Idea: (To be cont'd)