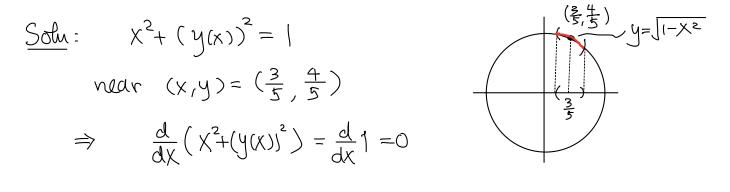
Remark
$$(\underline{lavel ext} vs \underline{Gtraph})$$
 $(-\overline{i}f(\overline{a}), 1)$ graph $\overline{z} = f(x, y)$
 \underline{eg} $f(x, y) = x^2 + y^2$
 \underline{graph} $\overline{z} = f(x, y)$
 $\exists r general,$
 $\overline{v}f(\overline{a})$ is named to $\overline{f}(c)$
 $at \overline{a}$ $(f(\overline{a}) = c)$
 bat not named to the graph of $\overline{z} = f(x, y)$
 at $(\overline{a}, f(\overline{a}))$
What is the named of the graph of $\overline{z} = f(x, y)$ at $(\overline{a}, f(\overline{a}))$?
Trick is = regard graph of $\overline{z} = f(x, y)$ as
 $o-level$ set of $F(x, y, \overline{z}) = \overline{z} - f(x'y)$ at
 $(\overline{a}, f(\overline{a}))$ $(F(\overline{a}, f(\overline{a})) = f(\overline{a}) - f(\overline{a}) = o)$
 $\overline{a} = (x, y)$
Then by the Thu, the named of the graph is
 $\overline{\nabla}F(\overline{a}, f(\overline{a})) = (-\frac{2f}{2x}, -\frac{2f}{2y}, 1)$ $(at (x, y) = \overline{a})$
 $= (-\overline{\nabla}f(\overline{a}), 1)$ $(1-d\overline{u})(1$

<u>Another Application of Chain Rule</u>: <u>Implicit Differentiation</u>

Qg1 C: $x^2+y^2=1$ (y can be solved in term of X (for most X)) Find $\frac{dy}{dx}$ at $(\frac{3}{5}, \frac{4}{5})$.



$$=) \qquad 2X + 2y(x) \frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{x}{y} \quad (\text{provided } y \neq 0)$$

$$\Rightarrow \quad \text{At the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \text{(for even the point } (\frac{3}{5}, \frac{4}{5}), \quad \frac{dy}{dx} = -\frac{3}{4} \quad \frac{dy}{dx} = -\frac{3}{4}$$

Remark: One cannot solve y as a function of x
near the points
$$(1,0)$$
 and $(-1,0)$
which correspond to " $y=0$ ".

$$\frac{\text{og 2}}{\text{Gaisidar}} \quad S: x^3 + z^2 + ye^{xz} + z\cos y = 0$$
Given that z can be regarded as a function
$$z = z(x,y) \text{ of (independent) variables } x, y \text{ locally near}$$
the point $(0,0,0)$. (clearly $(0,0,0) \in S$)
Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ at $(0,0,0)$

$$\begin{aligned} Sdh : & \frac{\partial}{\partial x} \left(\chi^3 + \overline{z}^2 + y e^{\chi \overline{z}} + \overline{z} \cos y \right) = 0 \\ & 3\chi^2 + 2\overline{z} \frac{\partial \overline{z}}{\partial \chi} + y e^{\chi \overline{z}} (\overline{z} + \chi \frac{\partial \overline{z}}{\partial \chi}) + \frac{\partial \overline{z}}{\partial \chi} \cos y = 0 \\ & (3\chi^2 + y\overline{z}e^{\chi \overline{z}}) + (2\overline{z} + \chi y e^{\chi \overline{z}} + \cos y) \frac{\partial \overline{z}}{\partial \chi} = 0 \\ & \Rightarrow \quad \frac{\partial \overline{z}}{\partial \chi} = - \frac{3\chi^2 + y\overline{z}e^{\chi \overline{z}}}{2\overline{z} + \chi y e^{\chi \overline{z}} + \cos y} \quad \begin{pmatrix} p \operatorname{virid} d \\ 2\overline{z} + \chi y e^{\chi \overline{z}} + \cos y + 0 \end{pmatrix} \\ & \Rightarrow \quad \frac{\partial \overline{z}}{\partial \chi} (0, 0) = 0 \end{aligned}$$

Similarly $\frac{\partial}{\partial y}(x^3 + z^2 + y e^{xz} + z \cos y) = 0$ (check!) $\Rightarrow \frac{\partial z}{\partial y} = \frac{z \sin y - e^{xz}}{2z + x y e^{xz} + \cos y}$ (provided $(zz + x y e^{xz} + \cos y + 0)$

$$\Rightarrow \frac{\overline{2}}{\overline{2}}(0,0) = -1$$

Finding Extrema (Maximum & Minimum)

Def: let
$$j \cdot f = A \Rightarrow IR$$
, $A \subseteq IR^{n}$ (may not be open)
 $1 \cdot \vec{a} \in A$
(1) f \vec{b} said to thave a global (absolute) maximum at \vec{a}
 if $f(\vec{a}) \ge f(\vec{x})$ $\forall \vec{x} \in A$
(2) f \vec{b} said to thave a local (relative) maximum at \vec{a}
 if $f(\vec{a}) \ge f(\vec{x})$ $\forall \vec{x} \in A$ "near" \vec{a}
 if $f(\vec{a}) \ge f(\vec{x})$ $\forall \vec{x} \in A \cap B_{\epsilon}(\vec{a})$)
(3) Similar definitions fa global (absolute) minimum and
local (relative) minimum by changing the inequality
 to $f(\vec{a}) \le f(\vec{x})$.

global max at \vec{a}
muans $f(\vec{a}) \ge f(\vec{x})$
 a the whole A

Pomath $C \cap I \cap \vec{a}$ $f(\vec{a}) = f(\vec{x}) \rightarrow 0$

<u>Remark</u>: Global <u>Extremum</u> (max/min) is also a local extremum.

$$\begin{array}{c} \underline{\operatorname{cgl}} \quad f: [\overline{x}, \overline{x}_{5}] \rightarrow \mathbb{R} \\ \overline{\operatorname{Global}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{1} \\ \min_{\mathrm{max}} : x_{2}, \overline{x}_{4} \\ \max_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{2}, \overline{x}_{4} \\ \min_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \\ \max_{\mathrm{min}} : \overline{x}_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \\ \max_{\mathrm{min}} : \overline{x}_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \\ \max_{\mathrm{min}} : \overline{x}_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \\ \max_{\mathrm{min}} : \overline{x}_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \\ \max_{\mathrm{min}} : \overline{x}_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \\ \max_{\mathrm{min}} : \overline{x}_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : x_{1}, \overline{x}_{3}, \overline{x}_{5} \\ \max_{\mathrm{min}} : \overline{x}_{1}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : \overline{x}_{1}, \overline{x}_{3}, \overline{x}_{5} \\ -\overline{\operatorname{Cal}} \\ -\overline{\operatorname{Cal}} \left(\overline{x}, \overline{x}_{5}, \overline{x}_{5} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : \overline{x}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : \overline{x}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \max_{\mathrm{min}} : \overline{x}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \operatorname{Cal} \operatorname{Cal} \left(\overline{x}, \overline{x}_{3}, \overline{x}_{5} \end{array} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \operatorname{Cal} \operatorname{Cal} \operatorname{Cal} \left(\overline{x}, \overline{x}_{5}, \overline{x}_{5} \right) \\ \underline{\operatorname{Cal}} \left(\begin{array}{c} \operatorname{Cal} \operatorname{C$$

$$\begin{array}{rcl} \hline & Thme \left(First Derivative Test \right) \\ & Suppose \quad f = A \rightarrow |R \ (R \subset R^h) \ attains a \ \underline{bral extremum} \\ at \quad \vec{a} \in Int(A), \ then \quad \vec{a} \quad is a \ \underline{ortical point} \ of f. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ thas \ a \ local extremum \ at \quad \vec{a} \in Int(A) \\ & If \quad \nabla f(\vec{a}) \ DNE, \ then \quad \vec{a} \quad is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ thas \ a \ local extremum \ at \quad \vec{a} \in Int(A) \\ & If \quad \nabla f(\vec{a}) \ DNE, \ then \quad \vec{a} \quad is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ thas \ a \ local extremum \ at \quad \vec{a} \in Int(A) \\ & If \quad \nabla f(\vec{a}) \ DNE, \ then \quad \vec{a} \quad is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ thas \ a \ local extremum \ at \quad \vec{a} \in Int(A) \\ & If \quad \nabla f(\vec{a}) \ DNE, \ then \quad \vec{a} \quad is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ is \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \quad f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \ f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \ f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \ f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \ f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \ f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \ f \ then \ a \ ortical point. \end{array}$$

$$\begin{array}{rcl} Ff = Suppose \ f \ then \ s \ then \$$

$$\frac{991}{f(x,y) = x^2 + 2y^2 - x + 3} \quad fa \quad x^2 + y^2 \leq 1 \quad (A = \{x^2 + y^2 \leq 1\})$$

Solu : Stept
Critical points in Int(A)
= Int
$$\{X^2+y^2 \le l\}$$

= $\{X^2+y^2 \le l\}$
 f is a polynomial $\Rightarrow \overline{\nabla}f$ always exist
In fact $\overline{\nabla}f = (2X-l, 4Y)$
 $\overline{O} = \overline{\nabla}f \Leftrightarrow \{\begin{array}{c} 2X-l = 0 \\ 4Y = 0 \end{array} \Leftrightarrow (X,Y) = (\frac{1}{2}, 0) \text{ the only critical pt} \\ (1(X,Y) > ll = \frac{1}{2} \le l) \end{array}$

$$s \quad f(\frac{1}{2}, 0) = (\frac{1}{2})^2 + 0 - \frac{1}{2} + 3 = \frac{11}{4} \quad (\text{check}!)$$

Step 2 Study f on
$$\partial \{x^2 + y^2 \le 1\} = \{x^2 + y^2 = 1\}$$

Parametrize the boundary $\{x^2 + y^2 = 1\}$ by angle 0
 $\begin{cases} x = (0,0) \\ y = x\overline{u},0 \end{cases}$ $\partial \in [0,2\pi]$
Thursfore on $\partial \{x^2 + y^2 = 1\}$,
 $f(\theta) = f((0,0), x\overline{u}, \theta) = (0,0) + 2x\overline{u}, \theta - (0,0) + 3$
 $= -(0,0) + \frac{1}{2}, 0^2 + \frac{21}{4}$ (check!)
Max. value of f on $\partial A = \frac{21}{4}$
 $at (0,0) = -\frac{1}{2} \Rightarrow (x,y) = (-\frac{1}{2}, \pm \frac{15}{2})$
mix. value of f on $\partial A = -(1 + \frac{1}{2}, 0^2 + \frac{21}{4} = 3)$ (check!)
 $at (0,0) = 1 \Rightarrow (x,y) = (1,0)$.

\

Step3 (mpare value of f at points from steps (1) &(2)

$$f(\pm, 0) = \frac{11}{4} \quad (value of critical pt in Int(A))$$

$$f(-\frac{1}{2}, \pm \frac{13}{2}) = \frac{21}{4} \quad (max value of f on PA)$$

$$f(1, 0) = 3 \quad (min value of f on PA)$$

$$\Rightarrow \prod_{\substack{n \in X}} \max value = \frac{21}{4} \text{ at global max } pts\left(-\frac{1}{2}, -\frac{1}{3}, \frac{1}{3}\right)$$

$$\min_{\substack{n \in X}} value = \frac{11}{4} \text{ at the global min } pt\left(\frac{1}{2}, 0\right)$$

$$global_{\max} \left(-\frac{1}{2}, -\frac{13}{2}\right)$$

$$global_{\max} \left(-\frac{1}{2}, -\frac{13}{2}\right)$$