Gradient and Directional Derivative

Def: let
$$f: \Omega \to \mathbb{R}$$
, $(\Omega \in \mathbb{R}^{n}, \operatorname{open})$
 $\overline{a} \in \Omega$
Then the gradient vector of f at \overline{a} is defined to be
 $\overline{\nabla}f(\overline{a}) = \left(\stackrel{\geq f}{\Rightarrow x_{1}}(\overline{a}), \dots, \stackrel{\geq f}{\Rightarrow x_{n}}(\overline{a}) \right)$

<u>Remark</u>: Using $\overrightarrow{\nabla}f$, linearization of f at $\overrightarrow{\alpha}$ can be written as

$$L(\vec{x}) = f(\vec{a}) + \sum_{i=1}^{2} \frac{\partial f}{\partial x_{i}}(\vec{a})(x_{i} - a_{i})$$
$$= f(\vec{a}) + \vec{\nabla}f(\vec{a}) \cdot (\vec{x} - \vec{a})$$

$$\underline{eg}: f(x,y) = x^{2} + z \times y$$

$$\frac{2f}{2x} = z \times + z \cdot y$$

$$\begin{array}{l} \underbrace{\operatorname{Def}}_{i}: \operatorname{Let}_{i} \cdot f: \mathcal{D} \to \mathbb{R} , (\mathcal{D} \in \mathbb{R}^{n}, \operatorname{open}) \\ i \quad \vec{a} \in \mathcal{D} \\ i \quad \vec{a} \in \mathcal{D} \\ i \quad \vec{a} \in \mathbb{R}^{n} \quad \operatorname{ke \ a \ unit} \operatorname{vecta}, \operatorname{ie.} || \vec{u} || = 1. \end{array}$$

$$\begin{array}{l} \text{Then the \ directional \ derivative} \quad of \ f \ \vec{u} \ \text{the \ direction} \\ of \ \vec{u} \ at \ \vec{a} \ \vec{u} \ defined \ to \ be \\ D_{\vec{u}} f(\vec{a}) = \lim_{t \to \infty} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t} \\ (= \operatorname{rate} \ of \ change \ of \ f \ \vec{u} \ the \ direction \ of \ \vec{u} \ at \ the \ point \ \vec{a}) \end{array}$$

$$\begin{array}{l} \underbrace{\operatorname{Remark}^{*}: \ If \ \vec{u} = (0, \dots, 1, \dots, 0) = \vec{e_{j}}, \\ \gamma_{j} \text{th \ component} \\ \vec{j} = j \cdots n \end{array}$$

Thus Suppose
$$f$$
 is differentiable at \vec{a} .
Let \vec{u} be a unit vector in \mathbb{R}^n , then
 $D_{\vec{u}}f(\vec{a}) = \vec{\nabla}f(\vec{a}) \cdot \vec{u}$

$$\begin{split} \underbrace{\operatorname{eg}}_{g} &: \operatorname{let} f(x,y) = \operatorname{au}^{-1}(\frac{x}{y}), \\ & \text{Find the rate of change of f at (1,12) in the direction of $\vec{V} = (1, -1)$ (not vaces any unit). \\ & \operatorname{Remark}_{i} : \vec{V} + \vec{O} \in \mathbb{R}^{n}, \text{ not wices any unit, then } \\ & \text{the direction of } \vec{V} \in \frac{\vec{V}}{\vec{V}} \quad \vec{O} \quad \frac{\vec{V}}{\vec{W}} \quad (a \text{ unit vecta}), \\ & \text{Solur} : \quad \left\lfloor t \quad \vec{u} = \frac{\vec{V}}{||\vec{V}||} = \frac{1}{\sqrt{1^{n+1}(y)^{n}}} \left(1, -1\right) = \left(\frac{1}{\sqrt{1^{2}}}, -\frac{1}{\sqrt{2}}\right) \\ & \frac{2f}{\vec{P}_{X}} = \frac{2}{\vec{P}_{X}} \left(\operatorname{au}^{-1}(\frac{X}{y})\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \frac{2}{\vec{P}_{X}} \left(\frac{X}{y}\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \cdot \frac{2}{\vec{P}_{X}} \left(\frac{x}{\vec{P}_{X}}\right) \left(\operatorname{au}^{-1}(\frac{X}{y})\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \frac{2}{\vec{P}_{X}} \left(\frac{X}{y}\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \cdot \frac{1}{\vec{P}_{X}} \\ & \frac{2f}{\vec{P}_{Y}} = \frac{2}{\vec{P}_{Y}} \left(\operatorname{au}^{-1}(\frac{X}{y})\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \frac{2}{\vec{P}_{X}} \left(\frac{X}{y}\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \cdot \frac{1}{\vec{P}_{X}} \\ & \frac{2f}{\vec{P}_{Y}} = \frac{2}{\vec{P}_{Y}} \left(\operatorname{au}^{-1}(\frac{X}{y})\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \frac{2}{\vec{P}_{X}} \left(\frac{X}{y}\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \cdot \frac{1}{\vec{P}_{X}} \\ & \frac{2f}{\vec{P}_{Y}} = \frac{2}{\vec{P}_{Y}} \left(\operatorname{au}^{-1}(\frac{X}{y})\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \frac{2}{\vec{P}_{X}} \left(\frac{X}{y}\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \cdot \frac{1}{\vec{P}_{X}} \\ & \frac{2f}{\vec{P}_{Y}} = \frac{2}{\vec{P}_{Y}} \left(\operatorname{au}^{-1}(\frac{X}{y})\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \frac{2}{\vec{P}_{X}} \left(\frac{X}{y}\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \cdot \frac{1}{\vec{P}_{X}} \\ & \frac{2f}{\vec{P}_{Y}} = \frac{2}{\vec{P}_{Y}} \left(\operatorname{au}^{-1}(\frac{X}{y})\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \frac{2}{\vec{P}_{X}} \left(\frac{X}{y}\right) = \frac{1}{\sqrt{1-(\frac{X}{3})^{n}}} \cdot \frac{1}{\vec{P}_{X}} \\ & \frac{2f}{\vec{P}_{X}} \left(\frac{1}{\vec{P}_{X}}\right) = \frac{1}{\vec{P}_{X}} \left(\frac{1}{\vec{P}_{X}}\right) = \frac{1}{\vec{P}_{X}} \left(\frac{1}{\vec{P}_{X}}\right) \\ & \frac{2f}{\vec{P}_{X}} \left(\frac{1}{\vec{P}_{X}}\right) = \vec{P}_{X} \left(\frac{1}{\vec{P}_{X}}\right) \\ & \frac{2f}{\vec{P}_{X}} \left(\frac{1}{\vec{P}_{X}}\right) = \vec{P}_{X} \left(\frac{1}{\vec{P}_{X}}\right) \\ & \frac{1}{\vec{P}_{X}} \left(\frac{1}{\vec{P}_{X}}\right) = \vec{P}_{X} \left(\frac{$$

$$Pf: \left(\underbrace{\text{Diffentiable}}_{|\hat{x}| = \hat{v}_{f}(\hat{a}) = \hat{v}_{f}(\hat{a}) \cdot \hat{u}}_{|\hat{x}|} \right)$$
Let $L(\hat{x})$ be the linearization of $f(\hat{x})$ at \hat{a}
then $f(\hat{x}) = L(\hat{x}) + \hat{\varepsilon}(\hat{x})$
 $= f(\hat{a}) + \hat{\nabla}f(\hat{a}) \cdot (\hat{x} - \hat{a}) + \hat{\varepsilon}(\hat{x})$
(with $\frac{|\hat{\varepsilon}(\hat{x})|}{\|\hat{x} - \hat{a}\|} \rightarrow 0$ as $\hat{x} \rightarrow \hat{a}$.
Puthing $\hat{x} = \hat{a} + t\hat{u}$, we have
 $f(\hat{a} + t\hat{u}) - f(\hat{a}) = \hat{\nabla}f(\hat{a}) \cdot (t\hat{u}) + \hat{\varepsilon}(\hat{a} + t\hat{u})$
 $\Rightarrow \frac{f(\hat{a} + t\hat{u}) - f(\hat{a})}{t} = \hat{\nabla}f(\hat{a}) \cdot \hat{u} + \frac{\hat{\varepsilon}(\hat{a} + t\hat{u})}{t}$
Since $\frac{|\hat{\varepsilon}(\hat{a} + t\hat{u})|}{|\hat{x}|} = \frac{|\hat{\varepsilon}(\hat{a} + t\hat{u})|}{||\hat{a} + t\hat{u} - \hat{a}||}$ (because $||\hat{u}|| = 1$
 $\rightarrow 0$ as $t \Rightarrow 0$ ($\Leftrightarrow \hat{a} + t\hat{u} \rightarrow \hat{a}$)
by differentiability
 $\therefore D_{\hat{u}}f(\hat{a}) = l\hat{u}_{\hat{u}} + \frac{f(\hat{a} + t\hat{u}) - f(\hat{a})}{t}$ exists
and $= \hat{\nabla}f(\hat{a}) \cdot \hat{u}$

)

Geometric Meanings of Gradient $\overline{\nabla}f$

At a point
$$\vec{a}$$
, f increases (decreases) most rapidly
in the direction of $\nabla f(\vec{a})$ ($-\nabla f(\vec{a})$) at a rate
of $\|\nabla f(\vec{a})\|$

Idea: If f is differentiable at
$$\vec{a}$$
, then
 $D_{\vec{u}}f(\vec{a}) = \vec{\nabla}f(\vec{a})\cdot\vec{u}$ (for $\|\vec{u}\|=1$)
Cauchy-Schwarg \Rightarrow
 $|D_{\vec{u}}f(\vec{a})| \le \|\vec{\nabla}f(\vec{a})\| \|\vec{u}\|$
 $= (\|\vec{\nabla}f(\vec{a})\|$

$$\begin{split} \hat{u}_{e} &= -\|\hat{\nabla}f(\hat{a})\| \leq D_{\vec{u}}f(\hat{a}) \leq \|\hat{\nabla}f(\hat{a})\| \\ \uparrow & \uparrow \\ u = - \hat{\nabla}f(\hat{a}) \\ \Leftrightarrow \hat{u} = - \frac{\hat{\nabla}f(\hat{a})}{\|\hat{\nabla}f(\hat{a})\|} \\ \end{split}$$

Remark : $D_{\vec{v}}f(\vec{a})$ can be defined for any vector \vec{v} , not necessary $||\vec{v}||=1$ and could be \vec{o} , by the same definition

$$D_{\vec{v}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a}+t\vec{v}) - f(\vec{a})}{t}$$

One can show that

$$D_{\vec{v}}f(\vec{a}) = \begin{cases} \|\vec{v}\| \ D_{\vec{v}}f(\vec{a}), \quad \vec{v} \ \vec{v} \neq \vec{o} \\ 0, \quad \vec{v} \ \vec{v} = \vec{o} \end{cases}$$
and that

$$D_{\vec{v}}f(\vec{a}) = \overline{\nabla}f(\vec{a}) \cdot \vec{v} \qquad \text{if } f \ \vec{v} \ \underline{differentiable} \ at\vec{a} \\ D_{\vec{v}}f(\vec{a}) = \overline{\nabla}f(\vec{a}) \cdot \vec{v} \qquad \text{if } f \ \vec{v} \ at \ (0,0) \end{cases}$$

Properties of Gradient
If
$$j \cdot f, g: \mathcal{D} \Rightarrow \mathbb{R}$$
 ($\mathcal{D} \in \mathbb{R}^{n}$, open) are differentiable,
 $l \cdot C \Rightarrow a constant$,
then
 $(1) \quad \overline{\nabla}(f \pm g) = \overline{\nabla}f \pm \overline{\nabla}g$,
 $(2) \quad \overline{\nabla}(cf) = c\overline{\nabla}f$
 $(3) \quad \overline{\nabla}(fg) = g\overline{\nabla}f + f\overline{\nabla}g$
 $(4) \quad \overline{\nabla}(\frac{f}{g}) = \frac{g\overline{\nabla}f - f\overline{\nabla}g}{g^{2}}$ provided $g \neq 0$

(Pf = Easily from properties of pontial derivatives)

Total Differential (of real-valued function)

$$\varsigma: \Omega \rightarrow \mathbb{R}$$
 ($\Omega \in \mathbb{R}^n$, open) differentiable at $\overline{a} \in \Omega$.
Then linearization at \overline{a} :
 $-f(\overline{x}) = f(\overline{a}) + \sum_{\overline{x}=\tau}^n \frac{2f}{\partial X_i}(\overline{a})(X_i - a_i) + \mathcal{E}(\overline{x})$
Usually denote: $\Delta f = f(\overline{x}) - f(\overline{a})$
 $\Delta X_i = X_i - a_i$
Then $\Delta f \simeq \sum_{\overline{x}=\tau}^n \frac{2f}{\partial X_i}(\overline{a}) \Delta X_i$ (provided $\lim_{\overline{x}\rightarrow\overline{a}} \frac{|\mathcal{E}(\overline{x})|}{|X_i - \overline{a}||} = 0$)
Classically, this approximation is presented as
 $df = \sum_{\overline{x}=\tau}^n \frac{2f}{\partial X_i}(\overline{a}) dX_i$ (turn his; " $\Delta f \rightarrow df$ ")
 $df = \sum_{\overline{x}=\tau}^n \frac{2f}{\partial X_i}(\overline{a}) dX_i$ (turn his; " $\Delta X_i \rightarrow dx_i$ ")
 $df = \sum_{\overline{x}=\tau}^n \frac{2f}{\partial X_i}(\overline{a}) dX_i$.
Suppre that f is differentiable on Ω . Then the
 $\frac{total differential}{differentiable}$ of f at \overline{a} is defined to be
the (funual) expression:
 $df = \sum_{\overline{x}=\tau}^n \frac{2f}{\partial X_i}(\overline{a}) dX_i$

Remark: In the future, df and dx; can be interpreted as a linear maps from IR" to TR.

eg: let
$$V(r, h) = \pi r^2 h$$

(Volume of the Cylinder)
V is differentiable
(because V is C')
 $dV = \frac{\partial V}{\partial r} dr + \frac{\partial V}{\partial h} dh$
 $= 2\pi r h dr + \pi r^2 dh$

For application = Suppose we want to approximate the change of V when (r, r) changes $(r, r) = (3, 1^2)$ to (3+0.08, 12-0.3)Then let $dr = \Delta r = 0.08$ $dr = \Delta r = -0.3$

h

we name

$$\Delta V \simeq dV = 2\pi r R dr + \pi r^2 dR$$

$$= 2\pi \cdot 3 \cdot 12 \cdot 0.08 + \pi \cdot 3^2 \cdot (-0.3)$$

$$= 3.06 \pi$$

$$\approx 9.61 \quad \&$$

Properties of Total Differential
If
$$f \cdot f \cdot g \cdot \Omega \rightarrow IR$$
 ($\Omega \subseteq IR^{n}$, open) are differentiable, and
 $I \cdot C \in IR$ is a constant.
Then
(I) $d(f \pm g) = df \pm dg$,
(I) $d(f \pm g) = df \pm dg$,
(I) $d(cf) = c df$
(I) $d(cf) = g df + f dg$
(I) $d(fg) = g df + f dg$
(I) $d(fg) = \frac{g df - f dg}{g^{2}}$ provided $g \neq 0$

(Pf = Easily from properties of pontial derivatives)

Summary (on differentiation of a real-valued function on
$$\mathbb{R}^n$$
)
 $f:\mathbb{R}^n \to \mathbb{R}$

A. Types of differentiations (derivatives)
• Directional Derivative:

$$D_{\vec{u}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a}+t\vec{u}) - f(\vec{a})}{t}$$
 ($||\vec{u}|| = 1$)

• Partial derivatives:

$$\frac{\partial f}{\partial x_{i}}(\vec{a}) = D_{\vec{e}_{i}}f(\vec{a}), \quad \vec{e}_{i} = (0, \dots, 1, \dots, 0)$$

$$\sum_{i \neq i} f_{i}(\vec{a}) = D_{\vec{e}_{i}}f(\vec{a}), \quad \vec{e}_{i} = (0, \dots, 1, \dots, 0)$$

• Gradient
$$\overline{\nabla}f(\overline{a}) = \left(\frac{\partial f}{\partial x_1}(\overline{a}), \cdots, \frac{\partial f}{\partial x_n}(\overline{a})\right)$$

• Total Differential

$$df(\vec{a}) = \sum_{\vec{a}=1}^{n} \frac{\partial f}{\partial x_{\vec{a}}}(\vec{a}) dx_{\vec{a}}$$

• Higher Derivatives

$$\frac{\partial^{k_1 + \dots + k_n} f}{\partial x_1^{k_1} \dots \partial x_n^{k_n}} (\vec{a})$$
(provided f is C^k , $k = k_1 + \dots + k_n$)
 \uparrow all partial derivatives up to ader k exist $k \in k_1$.

B. Linear approximation

- $L(\vec{x}) = f(\vec{a}) + \vec{\nabla} f(\vec{a}) \cdot (\vec{x} \vec{a})$
- $f(\vec{x}) = L(\vec{x}) + E(\vec{x})$ remerranterm

• f is differentiable at \bar{a} $\iff \lim_{\substack{x > \bar{a} \\ x > \bar{a}}} \frac{|\mathcal{E}(\bar{x})|}{||\bar{x} - \bar{a}||} = 0$ In this case, $df \simeq \Delta f$ (by identifying $dx_i = \Delta x_i$)

C. Relations among various concepts
•
$$C^{\infty} \Rightarrow \cdots \Rightarrow C^{k+1} \Rightarrow C^{k} \Rightarrow \cdots \Rightarrow C' \Rightarrow C^{\circ}$$
 (No reverse implication)

Conderexamples:
eg1:
$$f = iR \Rightarrow R$$
 (in MATH2050)
 $f(x) = \int x^{2}ain \frac{1}{x}$ if $x \neq 0$
 f is differentiable on iR but (cluck!)
 $f(x)$ is not continuous at $x=0$
(For $x \neq 0$, $f(x) = 2x ain \frac{1}{x} - \cos \frac{1}{x}$ limit DNE as $x \Rightarrow 0$)
Similarly $g(x) = x^{2k-2} f(x)$ is k -time differentiable but
 $g^{(k)}(x)$ is not catinuous at $x=0$ (Pf: Onited)
Hence k -time differentiable $\neq 0$ c^k.
(For multi-variable : $-R(\vec{x}) = t_{(x_{1},\cdots,x_{N})} = g(x_{1})$)
 $\frac{cg2}{16x_{1}y_{2}} = \begin{cases} \frac{xy^{2}}{x^{2}+y^{4}} & if x^{2}+y^{2} \neq 0\\ 0 & if x^{2}+y^{2} = 0 \end{cases}$
 $D_{ii}f(0,0)$ exists, \forall unit vector $\vec{u} = (aoo, aino) \in \mathbb{R}^{2}$
but f is not cantinuous at $(0,0)$ (cluck!)

$$\frac{y^2}{x^2+y^4} = \begin{cases} \frac{xy^2}{x^2+y^4} & \text{if } x^2+y^2 \neq 0 \\ 0 & \text{if } x^2+y^2 = 0 \end{cases}$$

$$D_{\vec{u}}f(0,0) \text{ exists, } \forall \text{ unit vector } \vec{u} = (co0, \text{ sino}) \in \mathbb{R}^2$$

$$b_{\vec{u}}f(0,0) \text{ exists, } \forall \text{ unit vector } \vec{u} = (co0, \text{ sino}) \in \mathbb{R}^2$$

y = f(x, y) = |x+y|is continuous on IR², but fx(0,0), fy(0,0) DNE (check!)

$$\frac{eq4}{f_x(0,0)} = \int |Xy|$$

$$f_x(0,0) = \int |Xy|$$

$$f_x(0,0) = f_y(0,0) = xist \quad (in fact = 0)$$

$$but \quad D_{it}f(0,0) = DNE \quad fa \quad it = te_{1}, te_{2}$$

<u>Review</u>: Matrix Multiplication Let $A = \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \vdots \\ a_{1N} & \vdots \\ a_{2N} & \vdots \\ a_$ 1 $b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = \begin{bmatrix} 1 \\ b \\ 1 \end{bmatrix}$ be a nx1-matrix regarded as a column vector in \mathbb{R}^h , then (matrix multiplication) $Ab = \begin{bmatrix} a_{11} \cdots a_{1N} \\ \vdots & \vdots \\ a_{m1} \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{1} \\ \vdots \\ b \end{bmatrix} = \begin{bmatrix} -\overline{a_{1}} - \overline{a_{1}} \\ \vdots \\ -\overline{a_{mn}} - \overline{a_{mn}} \end{bmatrix} \begin{bmatrix} b_{1} \\ \vdots \\ b_{mn} \end{bmatrix}$ $= \begin{bmatrix} a_{l1}b_{l}+\dots+a_{ln}b_{n} \\ \vdots \\ a_{l1}b_{l}+\dots+a_{ln}b_{n} \end{bmatrix} = \begin{bmatrix} \overline{a_{l}} \circ b \\ \vdots \\ \overline{a_{ln}} \circ \overline{b} \end{bmatrix}$ (result $= M \times I - matrix \\ = column m-mectoz)$ Similarly, for multiplication of (IXN) & (NXK) matrices $\begin{bmatrix} -\overline{\alpha} & - \end{bmatrix} \begin{pmatrix} 1\\ \overline{b}_1 & \cdots & \overline{b}_k \\ 1 & \cdots & 1 \end{pmatrix}$ $(a, \overline{b_1}, \dots, \overline{b_k} \in \mathbb{R}^n)$ row column vector $= \begin{bmatrix} \vec{a} \cdot \vec{b} \end{bmatrix}$ $\begin{bmatrix} \vec{a} \cdot \vec{b} \end{bmatrix}$ (result = 1xk-matrix = row k-vector)

In general : (Mxn) trues (Nxk)

$$AB = \begin{bmatrix} -\vec{a}_{1} \\ -\vec{a}_{m} \\ +\vec{b}_{1} \\ -\vec{a}_{m} \\ +\vec{b}_{m} \\ +$$

[1,2]B = [21, 24, 27]

[3,4]B = [47, 54, 6]

Differentiability of Vector-Valued Functions

Suppose $\frac{\partial f_i}{\partial x_j}(\vec{a})$ exists for each $\vec{\lambda} = 1, \dots, m$ a $\vec{j} = 1, \dots, n$. $f_i(\vec{x}) = f_i(\vec{a}) + \vec{\nabla} f_i(\vec{a}) \cdot (\vec{x} - \vec{a}) + \epsilon_i(\vec{x}) - (t)_i(t)_i(t)$ $((1 \times 1)) \quad (1 \times 1) \quad (1 \times 1) \quad (1 \times 1) \quad mathin)$ $\wedge \qquad \uparrow$

