Math 2010A Advanced Calculus I Differential Calculus of Functions of Several variables, f(x,y), f(x,y,z), $f(x_1,\cdots,x_n)$ maily n=2,3 (most of the truces) Vectors in IR" = X=(X1,..., Xn) E IR" $\mathbb{R}^n = \mathbb{R} \times \cdots \times \mathbb{R}$ (n copies of \mathbb{R}) = $\{(X_1, \dots, X_n) : X_i \in \mathbb{R} \text{ for } i = 1, \dots, n\}$ <u>Remarks</u>: i) In Textbook, bold face X is used to denote a vector. (ii) In high school, AB is a vector with initial point A a terminal point B. For $\vec{X} = (X_1, \dots, X_n)$ is a vector with initial point $A = O = (0, \dots, 0)$ e terminal point B=(x1,..., Xn). (iii) IR is called <u>Cartesian product</u> of n-rapies of R. (X1,...,Xn) <u>Cartesian/rectangular conditiates</u> of the point. 2 (1,2,2) (1,1) 7

x

(ドニこ)

Length, Dot (Inner) Product in
$$\mathbb{R}^{n}$$

Defn: Let $\vec{a} = (a_{1}, \dots, a_{n}) \in \mathbb{R}^{n}$
 $\vec{b} = (b_{1}, \dots, b_{n}) \in \mathbb{R}^{n}$
Then dot product (or inner product)
 $\vec{a} \cdot \vec{b} = a_{1}b_{1} + \dots + a_{n}b_{n}$
 f
(Hare to write the dot!)
In particular,
 $\vec{a} \cdot \vec{a} = a_{1}^{2} + \dots + a_{n}^{2} \stackrel{\text{dif}}{=} ||\vec{a}||^{2}$
 $||\vec{a}|| = \int a_{1}^{2} + \dots + a_{n}^{2}$ is called the length/magnitude
the vector \vec{a} .
(In Textbook, it's denoted by $|\vec{a}|$.)

of

Remark: Another notation for dot (wher) product
$$\langle \vec{a}, \vec{b} \rangle = \vec{a} \cdot \vec{b}$$

Properties of Dot Product
Let
$$\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^n$$
, $r \in \mathbb{R}$. Then
(1) $(\vec{a}+\vec{b})\cdot\vec{c} = \vec{a}\cdot\vec{c} + \vec{b}\cdot\vec{c}$
 $\vec{a}\cdot(\vec{b}+\vec{c}) = \vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c}$
(2) $(r\vec{a})\cdot\vec{b} = \vec{a}\cdot(r\vec{b}) = r(\vec{a}\cdot\vec{b})$

(3)
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

(4) $\vec{a} \cdot \vec{a} \neq 0$ and "equality fields" $\Leftrightarrow \vec{a} = 0 = (0, ..., 0)$
(5) $\vec{a} \cdot \vec{a} = ||\vec{a}||^2$
(6) $\vec{a} \cdot \vec{b} = ||\vec{a}|| ||\vec{b}|| \cos \theta$
where $\theta = angle between \vec{a} \in \vec{b}$
Hence, if $\vec{a}, \vec{b} \neq 0$,
 $\vec{a} \cdot \vec{b} = 0 \Leftrightarrow (a\tau\theta = 0 \Leftrightarrow \vec{a} \perp \vec{b} (perpendicular))$

Remarks (i) For
$$n=2,3$$
, $(5) \ge (6)$ are geometric properties of \mathbb{R}^n .
(ii) For $n \ge 4$, $||\overline{a}|| \cdot \overline{u}$ (5) $\ge (6)$ is defined before and
the θ in (6) is the definition of
 $\theta \stackrel{\text{def}}{=} (e^{-1} \left(\frac{\overline{a} \cdot \overline{b}}{||\overline{a}|| ||\overline{b}||} \right)$ for drigh dimensional vectors.
(iii) If $||\overline{u}||=1$, then \overline{u} is called a unit vector.
 $eg: \widehat{i}=(1,0,0)$ for white vectors in \mathbb{R}^3
 $\widehat{i}=(0,1,0)$ for unit vectors in \mathbb{R}^3
 $\widehat{k}=(0,0,1)$
 $\stackrel{\text{def}}{=} (6)$ (for $n\le 3$)
 $(Assume 0<\theta \le \frac{\pi}{2})$
 $\stackrel{\text{def}}{=} (1,0,0)$

eg : Suppose
$$\vec{V} \times \vec{m}$$
 are vectors of the same length.
Show that $(\vec{V}+\vec{w}) \cdot (\vec{v}-\vec{w}) = 0$.
Solon: $(\vec{V}+\vec{w}) \cdot (\vec{V}-\vec{w}) = \vec{V} \cdot \vec{V} + \vec{W} \cdot \vec{V} - \vec{V} \cdot \vec{w} - \vec{W} \cdot \vec{w}$
 $= ||\vec{V}||^2 - ||\vec{W}||^2 = 0$
Since \vec{V}, \vec{w} thave same length.

Solu:
$$\overrightarrow{AC} = \overrightarrow{A0} + \overrightarrow{OC}$$

 $\overrightarrow{BC} = \overrightarrow{B0} + \overrightarrow{OC}$
 $AB = diameter \Rightarrow \overrightarrow{A0} = -\overrightarrow{B0}$
 \overrightarrow{Iten} $\overrightarrow{AC} \cdot \overrightarrow{BC} = (\overrightarrow{A0} + \overrightarrow{OC}) \cdot (\overrightarrow{B0} + \overrightarrow{OC})$
 $= (\overrightarrow{A0} + \overrightarrow{OC}) \cdot (\overrightarrow{B0} + \overrightarrow{OC})$
 $= - ||\overrightarrow{A0}||^2 - \overrightarrow{OC} \cdot \overrightarrow{A0} + \overrightarrow{A0} \cdot \overrightarrow{OC} + ||\overrightarrow{OC}||^2$
 $= 0$
surve \overrightarrow{A} c are on the circle with contar \overrightarrow{O}
 $\Rightarrow \angle ACB = \frac{\overrightarrow{T}}{2}$

Equality dolds $\vec{a} = r\vec{b}$ or $\vec{b} = r\vec{a}$ $|\vec{a} \cdot \vec{b}| \leq ||\vec{a}|| ||\vec{b}||$ for some refer

let a, b ∈ R°. Then | a.b | ≤ ||a || ||b ||

 $ie. \left| \sum_{i=1}^{n} a_i b_i \right| \leq \int_{\overline{c}=1}^{n} a_i^2 \int_{\overline{c}=1}^{n} b_i^2$

Pf: and I if
$$\vec{a} = \vec{0}$$
 a $\vec{b} = \vec{0}$, then both sides are 0,
equality holds $\vec{a} = \vec{0} \cdot \vec{b} = \vec{0} \cdot \vec{a}$
cano $\vec{2} = \vec{a} + \vec{0} \times \vec{b} + \vec{0}$
Let $\vec{f}(\vec{k}) = \|\vec{k} \cdot \vec{a} - \vec{b}\|^2 > 0$
 $\vec{f}(\vec{k}) = \|\vec{k} \cdot \vec{a} - \vec{b}\|^2 > 0$
 $\vec{f}(\vec{k}) = \|\vec{k} \cdot \vec{a} - \vec{b}\|^2 > 0$
 $\vec{f}(\vec{k}) = \|\vec{k} \cdot \vec{a} - \vec{b}\|^2 > 0$
 $\vec{f}(\vec{k}) = (\vec{k} \cdot \vec{a} - \vec{b}) \cdot (\vec{k} \cdot \vec{a} - \vec{b}) = \cdots$
 $= \vec{k}^2 \|\vec{a}\|^2 - 2\vec{k} \cdot \vec{b} + \|\vec{b}\|^2$
 $\Rightarrow \Delta = (-2\vec{a} \cdot \vec{b})^2 - 4\|\vec{a}\|f\|\vec{b}\|^2 \le 0$
 $(dificationizant of the guadratic)$
 $\Rightarrow 1 \|\vec{a} \cdot \vec{b}\| \le \|\vec{a}\|\|\vec{b}\|$,
Finally, "Equality "fields $\Leftrightarrow \Delta = 0$
 $\Leftrightarrow \vec{f}(\vec{e})$ thus repeated voit $\vec{r} \in \mathbb{R}$
 $\Leftrightarrow \vec{f}(\vec{e})$ thus repeated voit $\vec{r} \in \mathbb{R}$
 $\Leftrightarrow \vec{b} = \vec{r} \vec{a} \times \vec{k}$
Remark : Coucleg - Schwarz, inequality \Rightarrow
 $-1 \le \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|} \le 1$ (provided $\vec{a} + \vec{0} \approx \vec{b} + \vec{0}$)
 $\Rightarrow The formula defining the angle bitness $\vec{a} \approx \vec{b}$ in high-dim.
 $\theta = (\vec{w}^{-1}(\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|\|\vec{b}\|})$ is well-defined.$