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1 Space curve

Usually, we will try to parameterize the curve using one variable only.

Straight line: Just find the difference between two vectors:

Example: Parameterize the straight line joining (1,2,3) and (4,5, 6), and with them as end-points:

Difference between two vectors: (4,5,6) — (1,2,3) = (3,3, 3).

Then take the point being subtracted as starting point (This time: (1,2,3)) and multiply the difference (1,2,3) by a
variable ¢ such that 0 <t < 1:

The line is {(1,2,3) +¢(3,3,3) : 0 <¢ < 1}

Of course, you can choose (4,5,6) as starting point, but this time the range of ¢ would be —1 < ¢ < 0 to ensure that
(1,2, 3) will be generated by the non-zero end-point of the interval:

The line is {(4,5,6) — ¢(3,3,3) : =1 <t < 0}

Conic section is an important topic related to parametrization:

To begin with, let’s recall some important trigometric identities and definition:

i cos®t +sin?t = 1.
ii 1+ tan?t = sec? t.
iii 1+ cot?t = csc?t.
iv sin 2t = 2sint cost.
\Y cos2t =1 —2sin’t = 2cos®t — 1 = cos®t — sin® t.
. . et et
vi sinht = —
vii cosht = M
2
vili ~ cosh®t —sinh®t = 1.

Example 1.1. Circle: 22 + y? =12 for some r > 0
This is similar to (i) in the above identities.

Then let x = rcost and y = rsint, we have

22y’ = (r cost)2 +(r Sint)2 = r2(cos2t + sin? t) = 2.



So we can parameterize circle by a variable t: {(rcost,rsint) 0 <t < 27w},

(As we want (1,0) as the starting point of the path of a circle, we set x = cost so that we have cos0 = 1.
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Example 1.2. Ellipse: (E> + (%) =1 for some a,b >0
a
This is similar to (i) in the above identities, but we need some adjustment-to eliminate a and b in the L.H.S:

Let x = acost and y = bsint, we have

G+ ()= (52) + (52) morrai

So we can parameterize circle by a variable t: {(acost,bsint) 0 <t < 27}

Example 1.3. Parabola: y = ax?
We can parameterize the curve by (t,at?).
Actually, for a differentiable function y = f(x), v(t) = (¢, f(t)) is a natural parametrization of the curve.
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Example 1.4. Hyperbola: % — y—Q
a b

=1
We can use either (ii) or (iv) to parameterize:
Let (x,y) = (asect,btant) or (acosht,bsinht). Then
22 y?  (asect)? (btant)?

72_?2: 5 — = =sec’t —tan?t = 1.
a a

or
2 B ht)2  (bsinht)?
%_%:(acosz ) —( 8122 ) = cosh?t — sinh?¢t = 1.
a a

So we can parameterize hyperbola by the following two ways:

i For region x > 0: {(asect,btant) : —g <t< g} or {(acosht,bsinht): t € R}

i For x < 0: {(—asect,btant) : ,g <t < g}, {(asect,btant) : g <t< 3%} or {(—acosht,bsinht) : t € R}
Exercise 1.1. Parameterize the following curves:

i The line segment joining (1, —2) and (-3, 2).

ii The circle of radius 5 centered at (3, —1).
-1 2 2
iii The ellipse with equation % + ‘% =1.
322 12y?
iv The hyperbola 22V 9 when z >0
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2 Computing Arc-length

Definition 2.1 (Regular parametrized curve). A reqular parametrized curve is a differentiable function v : (a,b) — R™

n =2 or 3, such that v'(t) # 0. for any t € (a,b).

Why do we need to care about regularity:



i Requiring the derivative to be non-zero enable us to find an inverse for the function.
What happen if the derivative equals to 0?7 Let’s consider f(x) = 2. Can we find an inverse in a neighborhood of

x =0,y =07

ii To make the curve to be “smooth” (No corners.) (e.g. v(t) = (t2,t3). Then ~/(t) = (2t,3t%). When t = 0, we have
7'(0) = (0,0))

Definition 2.2 (Arc-length). Let v : (a,b) — R™ be a regular parametrized curve. Then the arc length of v is defined by

-/ I ()| de

In general, to ensure the integrability of |7/ (u)]||, we will assume it to be continuous/piecewise continuous.

Remark (This remark will definitely not appear in tests/exams). In general, regularity is not a must for the arc-length
to be well-defined. More issues about points of continuity, like the “number” of discontinuity points/“size” of set of

discontinuity points will be considered for integrability. Please refer to Mathematical Analysis textbook for more details.

Note that this definition is independent of parametrization:
E.g. If a: (¢,d) — R™ represent the same curve as 7: ie. a(c) = y(a), a(d) = v(b), and there exists a differentiable
bijective map ¢ : (a,b) — (c,d) such that v(t) = a(¢(t)) and ¢'(t) > 0 on a < ¢ < b. Then we have

Arc-length computed by v = / 17/ ()| dt

/ o)V dt
/ Il (6]’ ()] dt

/ e/ (d(t))]||¢' (t) dt (As we assume ¢'(t) > 0 on a <t < b)

= / |’ (u)]| du (By letting u = ¢(t), then du = ¢'(t), ¢(a) = ¢, d(b) = d)

= Arc-length computed by «

Examples and Exercises:

Example 2.1. Part of Cycloid: v(0) = (0 —sinf,1 — cosf), 0 < 6 < 2.

Note that it is reqular in the given range:

7' (0) = (1 — cosf,sinf)
If v/ (0) # 0, we havecos # 1 and sin@ # 0
0 +#0,27

(So we remove the end-point to make it to be regular. Also note that the removal of finite number of points will not affect

the integral.) Then the required arclength will be :



2T
(= / I/ (8)]] d6
0

27
:/ (1 — cos 8, sin )| d8
0

2m
= / \/[(1 —cos0)? +sin? 6] df
0
2m
= VI[2—2cos0] df

0

27 0
:/ \/[22(1281112)] de
O 2

27
:/ \/4sin2€ df
O 2
0

2m
0 0
:2/ sin§ df (As 0 < 0 < 2w, we have 0 < 3 <™ which means sin§ >0)
0

0 s
= 4[— cos 5]8
= 4[-1-1]
=38

Remark. In the integration process, we try to eliminate “1” from 1 — cosf bye double angle formula:

0
1+cost9:1+2cos2§—1
0
— 92cos? =
cos 5
50
1—cosf=1—(1-2sin 3

0
= 9sin® =

2

Besides, Note that we can use similar method to compute the arclength of cycloid when 27 < 6 < 47w. However, note

47 27
0
/ \/4sin2gz—2/ sin — df
27 2 0 2

You need to be very aware of whether /f2(z) = f(z) in given range of z. As I mention in the tutorial, \/z > 0 for all

that

as7r<g<27r andsingSOhere.
z € R.

If f(x) > 0, we have v/ f2(z) = f(x)
If f(z) >0, we have v/ f2(z) = — f(x)

Exercise 2.1. Compute the arclength of the following curves:

4
i y:x+3fromx:1tox:2.
6x




ii The deltoid parametrized by r(6) = (2 cos 6 + cos 26, 2sin 6 — sin 260), 0 < 0 < 27.

iii The astroid defined by z3 + y% =1.

3 Arc Length parametrization and computation

Key: Parametrization is not unique:
Recall:
Parametrization of unit circle (z2 + y? = 1): {(cost,sint) 0 <t < 27}

How about {(cos2t,sin2t) 0 < ¢ < 27}7? Is this still a circle? What is the difference between these two parametrization?

i(1) {(cost,sint) 0 <t < 2m}: Passes through each point on the circle once.

(2) {(cos2t,sin2t) 0 <t < 27}: Passes through each point on the circle twice.

ii The arc-length computed on the whole domain is different:

2m
(1) {(cost,sint) 0 <t < 2r}: / [[(—sint, cost)| = 2.
0

= 4.

(2) {(cos2t,sin2t) 0 <t < 27}: / [[(—2sint, 2 cost)]
0

Also, note that for the first parametrization, the arc-length computed is just the difference of two endpoints. That’s
where arc-length parametrization comes from: To make ||7/(¢)|| = 1 such that the arc-length is just the difference

of two end-points.

Steps to parameterize y(t) : [a,b] — R™:

¢
Step 1:  Let s(t) = / |17/ (u)|| du. Note that after integration, R.H.S is a function in terms of ¢ only.
a
Step 2:  Make t as the subject of the formula of s(t) =

Step 3:  Then we take v(s) = y(t(s)) as a arc-length parameterized curve in terms of s(here s can be regarded as a

variable instead of a function.)

Idea: Note that we set up one more function t(-) as we want to use chain rule to have

%= 2] -

Hence we want to find ¢(-) such that

d'H Il

, which only makes sense when () is a regular path (i.e. ||y(t)|| # 0 for all ¢ € [a, b])
We then have

Hdt 1

[l = e



And note that differentiation and integration cancel each other, so s'(t) = ||7/(¢)||, then we can take - = s, and we can use

inverse function theorem to express t in terms of s.

Example 3.1. Find the arclength parametrization of the curve 7 : [a,00) — R?, denoted by v(t) = (3 cos 2t, 3sin 2t).
Then

¢
s(t) :/ ||(—6sin 2u, 6 cos 2u)|| du

t
= 6/ Vsin? 2u + cos? 2u du

=6(t—a)
Then we make t to be subject of the formula:

t=

+

a

~— Ol ®

Then we take vy(s) = (3005 {2 : (% + a)},Bsin [2- (% + a)}
Then note that

_ (3(;05 E —|—2a},SSin E +2aD.

I ()1 = || (—sin |5 +2a],cos | +2a] ) |
=1

Example 3.2 (Logarithmic spiral). Find the arc length parametrization of the curve v : [0,00) — R?, denoted by ~(t) =

b

(aeb cost, ae sint), where a > 0,b < 0.

Then

s(t) = / I ()] du

= /t (| (abe®™ cosu — ae®™ sinu, abe®™ sinu + ae® cosu)|| du
0

t
a / \/b262b“ cos2 u — 2be2b gin y cos u + €20 sin? u + b2e20% gin? 4 + 2be2b sin u cos u + €20% cos? u du
0

t
a/ \/bze%“ [cos? u + sin? u] + e2bu[sin? u + cos? u] du
0
t
(1/ v/ b2 e2bu + e2bu y,
0

t
:a\/b2+1/ e du
0

avb:+1 ..
= T Ly
avb? +1

= e -

Then by changing t to be the subject of the formula, we have

bs
In|——+1
¢ = [a\/bQJrl }
- b




Then we have

v(s) = (ae”™® cost(s), ae’™®) sint(s))

bs bs
In| ——+1 In| ———+1
— bs [a\/b2 +1 } bs ) Lq /02 + 1 }
=]|la|————+1] cos , G + 1| sin
avb? +1 b avb? + 1 b
to be the curve parameterized by arclength.

Exercise 3.1 (Related question to logarithmic spiral, adapted from 2021 TDG Quiz 1 Q5 with slight modification). Let
x(6) : 6 € [0,00) — R3 be a regular curve. Denote the partial arc-length of x(6) by

0
(o) = / I ()| du.

i Show that £(6) is an injective function.

ii The generalized logarithmic spiral y(6) : 6 € [0,00) — R? is defined by
y(0) = (e cos, e ?sin 0, \0),

where A # 0.
(1) Show that if b < 0, then x(6) = (ae® cos 6, ae®? sin §) has finite arc-length, that is, £(c0) = 0121010 /09 1%’ (w)]| du
exists and is finite.
(2) Does y(¢) have finite arc-length for A # 07 Explain your answer.
Exercise 3.2.
i It is given that the following curves are parametrized by arc-length. Find the value of p where p > 0.
(1) r(6) = (4sinph, —4 cos pb, 3p0)
(2) r(&):(p0050,2+sin9,17§c0s9),f0r0<0<27r.
(3)  r)=CEG0+n2, 10 -t)2,pt)for0<t <1
ii Express the following curve in the form that is parameterized by arc-length: Line joining (2,3,4) and (4, 2, 5).

i (2012 TDG Quiz 1 Q3)
Let f:[—4,—1] — R be defined by f(t) = %(t\/t2 —1-In(vVt2 —1+1)).

(1) Show that f/(t) = Vt2 — 1.
(2) Find a regular parametrization of the graph of f.

(3) Find an arc-length parametrization for this curve.

iv Prove that the arc length of the curve given by the graph of function r» = r(), a < 6 < 8, in polar coordinates is

B
6:/ V2 412 df.



4 Curve curvature (Will not appear in Test 1)

Intuitive idea of curvature: The rate of the “bending” of the curve away from its normal.

)

Intuitive idea of torsion: The rate of the “bending” of the curve away from its “tangent plane”.

Recall that
_ /(@) x " (@)

k(t) =
lo’ (B[
Example on computation: (Just computational exhaustive):
Find the curvature of(Logarithmic spiral: a(t) = (ae® cost, ae sint). a > 0,b > 0:

From the above, we have computed
o (t) = (abe® cost — ae® sint, abe® sint 4 ae® cost).

and

o/ ()| = ae’ /1 + b2.

Hence

b

o' (t) = (ab®e® cost — abe® sint — abe sint — ae’® cost, ab?e’ sint + abe® cost + abe’ cost — ae sint)

b

= (ab*e® cost — 2abe’ sint — ae’ cost, ab®e’ sint + 2abe® cost — ae® sint)

Therefore, we have

i i Kk

a'(t) x o'(t) = abe’ cost — aeb? sint abeb sint + ae cost 0
ab®eb cost — 2abe’ sint — ae® cost ab®e’ sint + 2abe’ cost — ae’tsint 0

= [(abe® cost — ae® sint)(ab®e® sint + 2abe’ cost — aeb sint)
— (abe® sint + ae cost)(ab?e’ cost — 2abe’ sint — ae’ cost)]k
= a?e®® b3 sint cost 4 2b% cos> t — bsint cost — b? sin®t — 2bsint cost + sin? ¢
—b3sintcost + 2b?sin? t — bsint cost + b? cos® t + 2bsint cost + cos® t]k
= a%e®'[b? cos® t + b2a® sin? t 4 +sin? t + cos? t]k

=a®(1 + %)k



Therefore we have

g 10 xa0)
o (1)
(14 b?)em
" ATy
a?(1 4+ b?)e?
1
aebt\/1+ b2

Exercise: Prove that the curvature of the curve defined by r = r(6) in polar coordinates is given by

|2r72 — rr'" + 12|

(r2 + rzz)g

k(0) =

Key:
_ |x/y// _ x//y/|

i Recall the formula x(9) e
(:L./Q + y/2)§

for 2-D curve. What we need to do is to express the curve in terms of

Catesterian coordinate first.

i Note that for r = r(0), the radial component r is a function of €, the angular component (This is just the same as
using f to express f(x). Don’t regard r in our question as a constant!).

Hence we can express the curve as (r(6) cos8,7(0) sin6).

iii Then we have
2’ (0) =r'(0) cos§ — r(#) sin
y'(0) =7'(0)sin 6 + r(0) cos 0
2" (0) =r"(0) cos — r'(0) sin @ — r'(0) sinf — r(6) cos @ = 1" (0) cos @ — 21" (0) sin @ — r(6) cos 0
y"(0) =r"(0)sin@ + ' (0) cos @ + 1’ (0) cos @ — r(0) sin = r"(0) sin 6 + +21'(6) cos § — r(6) sin &

Then we have

3
2

[22 + 422 = [(r'(0) cos 0 — r(0) sin6)% + (' (0) sin 0 + r(0) cos 0)?]
= [1'(0)? cos® 6 — 2r(0)r' (6) sin 0 cos § + r(6)? sin® 6 + ' (6)? sin 0 + 2r(6)r’ (0) sin 6 cos 6 + r(6)? cos® 0] 2
= [r'(0)%(cos® 0 + sin® 0) + r(6)2(cos? 6 + sin® 0)]

= (r(0) +7'(0)")?

2'y" = [r'(0) cos§ — r(0) sin 0][r"(0) sin 6 + 2r'(#) cos 6 — r() sin 6]

=7/ (0)r"(0) sin O cos O + 21 (0)? cos? § — r(0)r' (0) sin @ cos § — (0)7" (0) sin? @ — 2r(0)r’ () sin O cos § + r(H)? sin? A



2"y = [r"(0) cos @ — 2r'(0) sin @ — r(0) cos 0][r'(0) sin 6 + r(0) cos 0]

=7/ (0)r"(0) sin O cos O + r(0)r" (8) cos® 6 — 2r'%(#) sin? @ — 2r(0)r’ () sin O cos § — r(0)r’ (0) sin 6 cos § — 1(6)* cos 6

o'y — 2"y = 2" (0)?[cos? 0 + sin? 0] — r(0)r" (0)[sin? O + cos? 0] + r(0)*[cos® O + sin? ]

= 2r(0)% — r(0)r"(0) + r(0)?

Then we have

(o) 170 =
(22 + y2)?
_ 200 = r(0)r"(0) + ()
(r(0)2 +(0)2)

Exercise:
i Consider the curve C given by the graph of the function y = Incscz, 0 < x < 7, in rectangular coordinates.

(1) Show that r(s) = (2tan~! e®,Incosh s), s € R is an arc length parametrization of C.

(2) Show that the curvature of the curve is
1

cosh s

r(s) =

5 Shortest Distance between a point and a plane

Steps of finding the shortest distance between a point A with position vector a and a plane spanned by {b,c}, where

a,b,c € R3:

Step 1:  Compute n=b x ¢

(a,n)

Step 2:  Find the projection of a onto n by the formula Proj,a = TE
n

Step 3:  Compute ||Proj,al|. This is the required shortest distance.

Example 5.1. Compute the shortest distance between a point (1,0,0) with position vector a and a plane spanned by

{(0,1,1),(1,1,0)}

Solution.
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Step 1:  Compute n =b X c:

n=(0,1,1) x (1,1,0)

~
o

k
1
0
=(~1,1,-1)

(a,n)

Step 2:  Find the projection of a onto n by the formula Proj,a = Wn:
n

. ((1,0,0),(—1,1,-1))
Proj,a = 21 (1) 412 (-1,1,-1)
-1
=—(-1,1,—-1
ST

/111
- \37 373
Step 3:  Compute || Proj,al|:

1\? 1\ [1)?
Required shortest distance= \/(3> + (3) + <3> = ?

Example 5.2. Compute the shortest distance between a point (1,2,3) with position vector a and a plane spanned by

{(1,2,4),(2,3,1)}

Solution.

Step 1:  Compute n =b x c:

n=(1,2,4) x (2,3,1)

>

i gk
=1 2 4
2 3 1
= (710, 75 71)
Step 2:  Find the projection of a onto n by the formula Proj,a = <||:|T2> :

- <(17273)a(71077771)>
P = 10,7, -1
ST, E ) o
1
= —(-10,7,-1
pol 107D

Step 3:  Compute || Proj,al|:

1 1
Required shortest distance= 50V 1024+ 72+12 =

V150

11
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i(1)

ii

iii

(1)

(2)

iv

Revision

Let u,v € R". Prove the polarization identity
(la+v[* = fla=v]?)

<u7 V> =

Let u,v € R3. Prove that if (u,w) = (v, w) for any w € R?, then u = v.

Prove that for any u,v € R3, we have u x v is orthogonal to both u and v.

Let x(t) and y(¢) be any properly defined differentiable functions. Prove that
d d d
2 X,y (0) = (Zx(1), y(1)) + {x(1), 2y (1))

by first principle.

2021 TDG Quiz 1 Q4

Let (V, <:,->) be an n-dimensional inner product space over the real numbers with n < co.

Show that for any orthonormal basis {e;} ;, it holds
n m
X = Z(x, e;j)e; and Z |(x,e3)|? < ||lz|* for all integers m such that 1 < m < n.

i=1 i=1

If {v;}P, is an arbitrary basis for V , will the relation
n

x = Z(x, Vi)Vi
i=1

hold? If yes, give a proof; otherwise, raise a counterexample.

(Problem set 2 challenging question) Let (s) be a differentiable vector-valued function on R? with [|7/(s)| = 1.
Denote T(s) =v/(s)

(a). Show that (T'(s), T(s)) =0

(b). Denote (s) = || T/(s)]|, define N(s) by the relation: T'(s) = x(s)N(s)

Compute ||[N(s)| and (T(s),N(s)), deduce that (T(s),N'(s)) = —k(s)

(c). Does {T(s),N(s)} constitute a orthonormal basis for R? ? Hence prove or disprove:

N'(s) = —k(s)T(s)

Solution. i( 1) Suppose u # v, then we have u — v # 0.
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Toke w =u — v. Then by assumptions in the question, we have

0=<u,w>—-<v,w>

=<u—-vVv,w>

>0 (As we assume u—v #0.)

We have 0 > 0. Contradiction arises.

Then we have u = v

(2) Let u = (uy,ug2,u3) and v = (vy,vs,v3). Then we have
u X v = (ugv3 — uUzva, U3V — U1V3, UV2 — UV1)
Then we have

<u,u X v > =< (ug,us, us), (Uav3 — uzVa, UzV] — ULV, ULV2 — UV]) >
= U1U2V3 — UIUZV2 + U3U2V] — UIUV3 + UIV2U3 — UV1U3

=0

So we have u orthogonal to u X v.
Similarly, we have v orthogonal to u X v.
(3) Simple proof:
Note that x(t) = (x1(t),x2(t),x3(t)) and y(t) = (y1(t),y2(t),ys(t)) for some differentiable function

w1(t), v2(t), 23(t), y1 (1), y2(t), y3(t)-
Then note that

L (0), ¥ (0) = s (O () + 22 0) + (1) 1)

t
=2y (O (t) + 21 (8)yy (1) + 25()y2(t) + 22 (t)ya(t) + 25(t)ys(t) + x3()ys(t)
=21 ()ya (1) + 25 (t)y2(t) + 25(t)ys(t) + 21 (8)y) (1) + z2(t)ys () + x3(t)ys(t)

= (1), y(1)) + (x(1),¥'(t))

Proof by first principle:
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@ 0 (0 — tiug BRI ER) = (). y()

dt h—0 h
_ iy XU+ R) y(E+h) — (0, y(E+ h)) + (x(2), y(E+ h)) — (x(t), y(2))
h—0 h
_ iy XA+ R) —x(t),y(t+ b)) + x(0), y(E+ k) —y(D)
h—0 h

h—0 L y(E+h) + %ig})(x(t)’ w

)

The last step is due to the following lemma (And you don’t have to prove this in test/exam):

Lemma 6.1. If f,g : R — R" are bounded continuous functions. Then for all a € R, we have liin <
f(@),9(x) >=< f(a),g(a) >.

This can be proved by Cauchy Schwartz inequality and understanding on continuous functions.

ii(1) Note that as {e;}}_, is an basis of V, there exists aq, g, ..., € R such that

n
X = Z ;€.
i=1
Then by taking inner product on both sides with ey for 1 <i <n, we have

n
<X,eg > =< Zaiei,ek >
=1

n
<X,ex > = Zai < ej,ex >

i=1

n
< X,ex > = qp < €ek,ex > + Z o; < ej, ek >
i=1,i#k
n
<x,ex >=ai(l)+ Z (0) (By definition of orthonormal basis)
i=1,i#k

< X,ekx > = o

14



n
Hence we have x = > (x,e;)e; Also, note that
i=1

x| =< x,x >

n n
=< Z<X, ei>ei, Z(X, ei>ei >
=1

=1

n n
= Z < <x,ei>ei,z<x7 e;)e; >
i=1

i=1

= Z (x,e)||* < e, e; > (As {e;}l, is an orthonormal basis.

=1
m n

= lxedl®+ > lixel
=1 i=m-+1

(2) The statement is false.
(Recall from tutorial notes 2, this is true only when the given basis is orthonormal).
Counter-ezample“ v1 = (2,0),va = (0,1).
Then note that (1,0) = 3(2,0) +0(0,1) = Jva.

1
However, note that < (1,0),vy >=< (1,0),(2,0) >=2 # 3

21 Refer to solution of problem set 2 for more details.
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