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1 Space curve

Usually, we will try to parameterize the curve using one variable only.

Straight line: Just find the difference between two vectors:

Example: Parameterize the straight line joining (1, 2, 3) and (4, 5, 6), and with them as end-points:

Difference between two vectors: (4, 5, 6)− (1, 2, 3) = (3, 3, 3).

Then take the point being subtracted as starting point (This time: (1, 2, 3)) and multiply the difference (1, 2, 3) by a

variable t such that 0 ≤ t ≤ 1:

The line is {(1, 2, 3) + t(3, 3, 3) : 0 ≤ t ≤ 1}

Of course, you can choose (4, 5, 6) as starting point, but this time the range of t would be −1 ≤ t ≤ 0 to ensure that

(1, 2, 3) will be generated by the non-zero end-point of the interval:

The line is {(4, 5, 6)− t(3, 3, 3) : −1 ≤ t ≤ 0}

Conic section is an important topic related to parametrization:

To begin with, let’s recall some important trigometric identities and definition:

i cos2 t+ sin2 t = 1.

ii 1 + tan2 t = sec2 t.

iii 1 + cot2 t = csc2 t.

iv sin 2t = 2 sin t cos t.

v cos 2t = 1− 2 sin2 t = 2 cos2 t− 1 = cos2 t− sin2 t.

vi sinh t =
et − e−t

2
.

vii cosh t =
et + e−t

2
.

viii cosh2 t− sinh2 t = 1.

Example 1.1. Circle: x2 + y2 = r2 for some r > 0

This is similar to (i) in the above identities.

Then let x = r cos t and y = r sin t, we have

x2 + y2 = (r cos t)2 + (r sin t)2 = r2(cos2 t+ sin2 t) = r2.
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So we can parameterize circle by a variable t: {(r cos t, r sin t) 0 ≤ t < 2π}.

(As we want (1, 0) as the starting point of the path of a circle, we set x = cos t so that we have cos 0 = 1.

Example 1.2. Ellipse:
(x
a

)2

+
(y
b

)2

= 1 for some a, b > 0

This is similar to (i) in the above identities, but we need some adjustment-to eliminate a and b in the L.H.S:

Let x = a cos t and y = b sin t, we have

(x
a

)2

+
(y
b

)2

=

(
(a cos t)

a

)2

+

(
(b sin t)

b

)2

= cos2 t+ sin2 t = 1.

So we can parameterize circle by a variable t: {(a cos t, b sin t) 0 ≤ t < 2π}

Example 1.3. Parabola: y = ax2

We can parameterize the curve by (t, at2).

Actually, for a differentiable function y = f(x), γ(t) = (t, f(t)) is a natural parametrization of the curve.

Example 1.4. Hyperbola:
x2

a2
− y2

b2
= 1

We can use either (ii) or (iv) to parameterize:

Let (x, y) = (a sec t, b tan t) or (a cosh t, b sinh t). Then

x2

a2
− y2

b2
=

(a sec t)2

a2
− (b tan t)2

b2
= sec2 t− tan2 t = 1.

or
x2

a2
− y2

b2
=

(a cosh t)2

a2
− (b sinh t)2

b2
= cosh2 t− sinh2 t = 1.

So we can parameterize hyperbola by the following two ways:

i For region x > 0: {(a sec t, b tan t) : −π

2
< t <

π

2
} or {(a cosh t, b sinh t) : t ∈ R}

ii For x < 0: {(−a sec t, b tan t) : −π

2
< t <

π

2
}, {(a sec t, b tan t) : π

2
< t <

3π

2
} or {(−a cosh t, b sinh t) : t ∈ R}

Exercise 1.1. Parameterize the following curves:

i The line segment joining (1,−2) and (−3, 2).

ii The circle of radius 5 centered at (3,−1).

iii The ellipse with equation
(x− 1)2

4
+

y2

9
= 1.

iv The hyperbola
3x2

4
− 12y2

13
= 2 when x > 0

2 Computing Arc-length

Definition 2.1 (Regular parametrized curve). A regular parametrized curve is a differentiable function γ : (a, b) → Rn,

n = 2 or 3, such that γ′(t) ̸= 0. for any t ∈ (a, b).

Why do we need to care about regularity:
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i Requiring the derivative to be non-zero enable us to find an inverse for the function.

What happen if the derivative equals to 0? Let’s consider f(x) = x2. Can we find an inverse in a neighborhood of

x = 0, y = 0?

ii To make the curve to be “smooth” (No corners.) (e.g. γ(t) = (t2, t3). Then γ′(t) = (2t, 3t2). When t = 0, we have

γ′(0) = (0, 0))

Definition 2.2 (Arc-length). Let γ : (a, b) → Rn be a regular parametrized curve. Then the arc length of γ is defined by

ℓ(t) =

∫ t

a

∥γ′(u)∥ du

In general, to ensure the integrability of ∥γ′(u)∥, we will assume it to be continuous/piecewise continuous.

Remark (This remark will definitely not appear in tests/exams). In general, regularity is not a must for the arc-length

to be well-defined. More issues about points of continuity, like the “number” of discontinuity points/“size” of set of

discontinuity points will be considered for integrability. Please refer to Mathematical Analysis textbook for more details.

Note that this definition is independent of parametrization:

E.g. If α : (c, d) → Rn represent the same curve as γ: i.e. α(c) = γ(a), α(d) = γ(b), and there exists a differentiable

bijective map ϕ : (a, b) → (c, d) such that γ(t) = α(ϕ(t)) and ϕ′(t) > 0 on a ≤ t ≤ b. Then we have

Arc-length computed by γ =

∫ b

a

∥γ′(t)∥ dt

=

∫ b

a

∥[α(ϕ(t))]′∥ dt

=

∫ b

a

∥[α′(ϕ(t))]ϕ′(t)∥ dt

=

∫ b

a

∥[α′(ϕ(t))]∥ϕ′(t) dt (As we assume ϕ′(t) > 0 on a ≤ t ≤ b)

=

∫ d

c

∥α′(u)∥ du (By letting u = ϕ(t), then du = ϕ′(t), ϕ(a) = c, ϕ(b) = d)

= Arc-length computed by α

Examples and Exercises:

Example 2.1. Part of Cycloid: γ(θ) = (θ − sin θ, 1− cos θ), 0 < θ < 2π.

Note that it is regular in the given range:

γ′(θ) = (1− cos θ, sin θ)

If γ′(θ) ̸= 0, we have cos θ ̸= 1 and sin θ ̸= 0

θ ̸= 0, 2π

(So we remove the end-point to make it to be regular. Also note that the removal of finite number of points will not affect

the integral.) Then the required arclength will be :
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ℓ =

∫ 2π

0

∥γ′(θ)∥ dθ

=

∫ 2π

0

∥(1− cos θ, sin θ)∥ dθ

=

∫ 2π

0

√
[(1− cos θ)2 + sin2 θ] dθ

=

∫ 2π

0

√
[2− 2 cos θ] dθ

=

∫ 2π

0

√
[2− 2(1− 2 sin2

θ

2
)] dθ

=

∫ 2π

0

√
4 sin2

θ

2
dθ

= 2

∫ 2π

0

sin
θ

2
dθ (As 0 < θ < 2π, we have 0 <

θ

2
< π, which means sin

θ

2
≥ 0)

= 4[− cos
θ

2
]2π0

= −4[−1− 1]

= 8

Remark. In the integration process, we try to eliminate “1” from 1− cos θ bye double angle formula:

1 + cos θ = 1 + 2 cos2
θ

2
− 1

= 2 cos2
θ

2

1− cos θ = 1−
(
1− 2 sin2

θ

2

)
= 2 sin2

θ

2

Besides, Note that we can use similar method to compute the arclength of cycloid when 2π < θ < 4π. However, note

that ∫ 4π

2π

√
4 sin2

θ

2
= −2

∫ 2π

0

sin
θ

2
dθ

as π < θ
2 < 2π and sin θ

2 ≤ 0 here.

You need to be very aware of whether
√
f2(x) = f(x) in given range of x. As I mention in the tutorial,

√
x ≥ 0 for all

x ∈ R.

If f(x) ≥ 0, we have
√

f2(x) = f(x)

If f(x) ≥ 0, we have
√

f2(x) = −f(x)

Exercise 2.1. Compute the arclength of the following curves:

i y =
x4 + 3

6x
from x = 1 to x = 2.
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ii The deltoid parametrized by r(θ) = (2 cos θ + cos 2θ, 2 sin θ − sin 2θ), 0 ≤ θ ≤ 2π.

iii The astroid defined by x
2
3 + y

2
3 = 1.

3 Arc Length parametrization and computation

Key: Parametrization is not unique:

Recall:

Parametrization of unit circle (x2 + y2 = 1): {(cos t, sin t) 0 ≤ t < 2π}

How about {(cos 2t, sin 2t) 0 ≤ t < 2π}? Is this still a circle? What is the difference between these two parametrization?

i ( 1 ) {(cos t, sin t) 0 ≤ t < 2π}: Passes through each point on the circle once.

( 2 ) {(cos 2t, sin 2t) 0 ≤ t < 2π}: Passes through each point on the circle twice.

ii The arc-length computed on the whole domain is different:

( 1 ) {(cos t, sin t) 0 ≤ t < 2π}:
∫ 2π

0

∥(− sin t, cos t)∥ = 2π.

( 2 ) {(cos 2t, sin 2t) 0 ≤ t < 2π}:
∫ 2π

0

∥(−2 sin t, 2 cos t)∥ = 4π.

Also, note that for the first parametrization, the arc-length computed is just the difference of two endpoints. That’s

where arc-length parametrization comes from: To make ∥γ′(t)∥ = 1 such that the arc-length is just the difference

of two end-points.

Steps to parameterize γ(t) : [a, b] → Rn:

Step 1: Let s(t) =

∫ t

a

∥γ′(u)∥ du. Note that after integration, R.H.S is a function in terms of t only.

Step 2: Make t as the subject of the formula of s(t) = ....

Step 3: Then we take γ(s) = γ(t(s)) as a arc-length parameterized curve in terms of s(here s can be regarded as a

variable instead of a function.)

Idea: Note that we set up one more function t(·) as we want to use chain rule to have∥∥∥∥dγ(t)d·

∥∥∥∥ =

∥∥∥∥dγ(t)dt

∥∥∥∥∥∥∥∥dtd·
∥∥∥∥ = 1

Hence we want to find t(·) such that ∥∥∥∥dtd·
∥∥∥∥ =

1

∥γ(t)∥

, which only makes sense when γ(t) is a regular path (i.e. ∥γ(t)∥ ≠ 0 for all t ∈ [a, b])

We then have ∥∥∥∥ d·dt
∥∥∥∥ = ∥γ(t)∥.
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And note that differentiation and integration cancel each other, so s′(t) = ∥γ′(t)∥, then we can take · = s, and we can use

inverse function theorem to express t in terms of s.

Example 3.1. Find the arclength parametrization of the curve γ : [a,∞) → R2, denoted by γ(t) = (3 cos 2t, 3 sin 2t).

Then

s(t) =

∫ t

a

∥(−6 sin 2u, 6 cos 2u)∥ du

= 6

∫ t

a

√
sin2 2u+ cos2 2u du

= 6(t− a)

Then we make t to be subject of the formula:

t =
s

6
+ a

Then we take γ(s) =
(
3 cos

[
2 ·

(s
6
+ a

)]
, 3 sin

[
2 ·

(s
6
+ a

)])
=

(
3 cos

[s
3
+ 2a

]
, 3 sin

[s
3
+ 2a

])
.

Then note that

∥γ′(s)∥ = ∥
(
− sin

[s
3
+ 2a

]
, cos

[s
3
+ 2a

])
∥

= 1

Example 3.2 (Logarithmic spiral). Find the arc length parametrization of the curve γ : [0,∞) → R2, denoted by γ(t) =

(aebt cos t, aebt sin t), where a > 0, b < 0.

Then

s(t) =

∫ t

0

∥γ′(u)∥ du

=

∫ t

0

∥(abebu cosu− aebu sinu, abebu sinu+ aebu cosu)∥ du

= a

∫ t

0

√
b2e2bu cos2 u− 2be2bu sinu cosu+ e2bu sin2 u+ b2e2bu sin2 u+ 2be2bu sinu cosu+ e2bu cos2 u du

= a

∫ t

0

√
b2e2bu[cos2 u+ sin2 u] + e2bu[sin2 u+ cos2 u] du

= a

∫ t

0

√
b2e2bu + e2bu du

= a
√

b2 + 1

∫ t

0

ebu du

=
a
√
b2 + 1

b
[ebu]t0

=
a
√
b2 + 1

b
(ebt − 1)

Then by changing t to be the subject of the formula, we have

t =

ln

[
bs

a
√
b2 + 1

+ 1

]
b
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Then we have

γ(s) = (aebt(s) cos t(s), aebt(s) sin t(s))

=

a

[
bs

a
√
b2 + 1

+ 1

]
cos

 ln

[
bs

a
√
b2 + 1

+ 1

]
b

, a

[
bs

a
√
b2 + 1

+ 1

]
sin

 ln

[
bs

a
√
b2 + 1

+ 1

]
b




to be the curve parameterized by arclength.

Exercise 3.1 (Related question to logarithmic spiral, adapted from 2021 TDG Quiz 1 Q5 with slight modification). Let

x(θ) : θ ∈ [0,∞) → R3 be a regular curve. Denote the partial arc-length of x(θ) by

ℓ(θ) =

∫ θ

0

∥x′(u)∥ du.

i Show that ℓ(θ) is an injective function.

ii The generalized logarithmic spiral y(θ) : θ ∈ [0,∞) → R3 is defined by

y(θ) = (e−θ cos θ, e−θ sin θ, λθ),

where λ ̸= 0.

( 1 ) Show that if b < 0, then x(θ) = (aebθ cos θ, aebθ sin θ) has finite arc-length, that is, ℓ(∞) = lim
θ→∞

∫ θ

0

∥x′(u)∥ du

exists and is finite.

( 2 ) Does y(θ) have finite arc-length for λ ̸= 0? Explain your answer.

Exercise 3.2.

i It is given that the following curves are parametrized by arc-length. Find the value of p where p > 0.

( 1 ) r(θ) = (4 sin pθ,−4 cos pθ, 3pθ)

( 2 ) r(θ) = (p cos θ, 2 + sin θ, 1−
√
3
2 cos θ), for 0 < θ < 2π.

( 3 ) r(t) = ( 13 (1 + t)
3
2 , 1

3 (1− t)
3
2 , pt) for 0 < t < 1.

ii Express the following curve in the form that is parameterized by arc-length: Line joining (2, 3, 4) and (4, 2, 5).

iii (2012 TDG Quiz 1 Q3)

Let f : [−4,−1] → R be defined by f(t) =
1

2
(t
√
t2 − 1− ln (

√
t2 − 1 + t)).

( 1 ) Show that f ′(t) =
√
t2 − 1.

( 2 ) Find a regular parametrization of the graph of f .

( 3 ) Find an arc-length parametrization for this curve.

iv Prove that the arc length of the curve given by the graph of function r = r(θ), α < θ < β, in polar coordinates is

ℓ =

∫ β

α

√
r′2 + r2 dθ.

7



4 Curve curvature (Will not appear in Test 1)

Intuitive idea of curvature: The rate of the “bending” of the curve away from its normal.

Intuitive idea of torsion: The rate of the “bending” of the curve away from its “tangent plane”.

Recall that

κ(t) =
∥α′(t)× α′′(t)∥

∥α′(t)∥3
.

Example on computation: (Just computational exhaustive):

Find the curvature of(Logarithmic spiral: α(t) = (aebt cos t, aebt sin t). a > 0, b > 0:

From the above, we have computed

α′(t) = (abebt cos t− aebt sin t, abebt sin t+ aebt cos t).

and

∥α′(t)∥ = aebt
√
1 + b2.

Hence

α′′(t) = (ab2ebt cos t− abebt sin t− abebt sin t− aebt cos t, ab2ebt sin t+ abebt cos t+ abebt cos t− aebt sin t)

= (ab2ebt cos t− 2abebt sin t− aebt cos t, ab2ebt sin t+ 2abebt cos t− aebt sin t)

Therefore, we have

α′(t)× α′′(t) =

∣∣∣∣∣∣∣∣∣
i j k

abebt cos t− aebt sin t abebt sin t+ aebt cos t 0

ab2ebt cos t− 2abebt sin t− aebt cos t ab2ebt sin t+ 2abebt cos t− aebt sin t 0

∣∣∣∣∣∣∣∣∣
= [(abebt cos t− aebt sin t)(ab2ebt sin t+ 2abebt cos t− aebt sin t)

− (abebt sin t+ aebt cos t)(ab2ebt cos t− 2abebt sin t− aebt cos t)]k

= a2e2bt[b3 sin t cos t+ 2b2 cos2 t− b sin t cos t− b2 sin2 t− 2b sin t cos t+ sin2 t

− b3 sin t cos t+ 2b2 sin2 t− b sin t cos t+ b2 cos2 t+ 2b sin t cos t+ cos2 t]k

= a2e2bt[b2 cos2 t+ b2a2 sin2 t++sin2 t+ cos2 t]k

= a2(1 + b2)e2btk
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Therefore we have

κ(t) =
∥α′(t)× α′′(t)∥

∥α′(t)∥3

=
a2(1 + b2)e2bt

(aebt
√
1 + b2)3

=
a2(1 + b2)e2bt

a3e3bt(1 + b2)
3
2

=
1

aebt
√
1 + b2

Exercise: Prove that the curvature of the curve defined by r = r(θ) in polar coordinates is given by

κ(θ) =
|2r′2 − rr′′ + r2|

(r2 + r′2)
3
2

Key:

i Recall the formula κ(θ) =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

for 2-D curve. What we need to do is to express the curve in terms of

Catesterian coordinate first.

ii Note that for r = r(θ), the radial component r is a function of θ, the angular component (This is just the same as

using f to express f(x). Don’t regard r in our question as a constant!).

Hence we can express the curve as (r(θ) cos θ, r(θ) sin θ).

iii Then we have

x′(θ) = r′(θ) cos θ − r(θ) sin θ

y′(θ) = r′(θ) sin θ + r(θ) cos θ

x′′(θ) = r′′(θ) cos θ − r′(θ) sin θ − r′(θ) sin θ − r(θ) cos θ = r′′(θ) cos θ − 2r′(θ) sin θ − r(θ) cos θ

y′′(θ) = r′′(θ) sin θ + r′(θ) cos θ + r′(θ) cos θ − r(θ) sin θ = r′′(θ) sin θ ++2r′(θ) cos θ − r(θ) sin θ

Then we have

[x′2 + y′2]
3
2 = [(r′(θ) cos θ − r(θ) sin θ)2 + (r′(θ) sin θ + r(θ) cos θ)2]

3
2

= [r′(θ)2 cos2 θ − 2r(θ)r′(θ) sin θ cos θ + r(θ)2 sin2 θ + r′(θ)2 sin2 θ + 2r(θ)r′(θ) sin θ cos θ + r(θ)2 cos2 θ]
3
2

= [r′(θ)2(cos2 θ + sin2 θ) + r(θ)2(cos2 θ + sin2 θ)]
3
2

= (r(θ)2 + r′(θ)2)
3
2

x′y′′ = [r′(θ) cos θ − r(θ) sin θ][r′′(θ) sin θ + 2r′(θ) cos θ − r(θ) sin θ]

= r′(θ)r′′(θ) sin θ cos θ + 2r′(θ)2 cos2 θ − r(θ)r′(θ) sin θ cos θ − r(θ)r′′(θ) sin2 θ − 2r(θ)r′(θ) sin θ cos θ + r(θ)2 sin2 θ
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x′′y′ = [r′′(θ) cos θ − 2r′(θ) sin θ − r(θ) cos θ][r′(θ) sin θ + r(θ) cos θ]

= r′(θ)r′′(θ) sin θ cos θ + r(θ)r′′(θ) cos2 θ − 2r′2(θ) sin2 θ − 2r(θ)r′(θ) sin θ cos θ − r(θ)r′(θ) sin θ cos θ − r(θ)2 cos θ

x′y′′ − x′′y′ = 2r′(θ)2[cos2 θ + sin2 θ]− r(θ)r′′(θ)[sin2 θ + cos2 θ] + r(θ)2[cos2 θ + sin2 θ]

= 2r′(θ)2 − r(θ)r′′(θ) + r(θ)2

Then we have

κ(θ) =
|x′y′′ − x′′y′|
(x′2 + y′2)

3
2

=
|2r′(θ)2 − r(θ)r′′(θ) + r(θ)2|

(r(θ)2 + r′(θ)2)
3
2

Exercise:

i Consider the curve C given by the graph of the function y = ln cscx, 0 < x < π, in rectangular coordinates.

( 1 ) Show that r(s) = (2 tan−1 es, ln cosh s), s ∈ R is an arc length parametrization of C.

( 2 ) Show that the curvature of the curve is

κ(s) =
1

cosh s

5 Shortest Distance between a point and a plane

Steps of finding the shortest distance between a point A with position vector a and a plane spanned by {b, c}, where

a,b, c ∈ R3:

Step 1: Compute n = b× c

Step 2: Find the projection of a onto n by the formula Projna =
⟨a,n⟩
∥n∥2

n

Step 3: Compute ∥Projna∥. This is the required shortest distance.

Example 5.1. Compute the shortest distance between a point (1, 0, 0) with position vector a and a plane spanned by

{(0, 1, 1), (1, 1, 0)}

Solution.
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Step 1: Compute n = b× c:

n = (0, 1, 1)× (1, 1, 0)

=

∣∣∣∣∣∣∣∣∣
î ĵ k̂

0 1 1

1 1 0

∣∣∣∣∣∣∣∣∣
= (−1, 1,−1)

Step 2: Find the projection of a onto n by the formula Projna =
⟨a,n⟩
∥n∥2

n:

Projna =
⟨(1, 0, 0), (−1, 1,−1)⟩

12 + (−1)2 + 12
(−1, 1,−1)

=
−1

3
(−1, 1,−1)

=

(
1

3
,−1

3
,
1

3

)

Step 3: Compute ∥Projna∥:

Required shortest distance=

√(
1

3

)2

+

(
−1

3

)2

+

(
1

3

)2

=

√
3

3
.

Example 5.2. Compute the shortest distance between a point (1, 2, 3) with position vector a and a plane spanned by

{(1, 2, 4), (2, 3, 1)}

Solution.

Step 1: Compute n = b× c:

n = (1, 2, 4)× (2, 3, 1)

=

∣∣∣∣∣∣∣∣∣
î ĵ k̂

1 2 4

2 3 1

∣∣∣∣∣∣∣∣∣
= (−10, 7,−1)

Step 2: Find the projection of a onto n by the formula Projna =
⟨a,n⟩
∥n∥2

n:

Projna =
⟨(1, 2, 3), (−10, 7,−1)⟩
(−10)2 + 72 + (−1)2

(−10, 7,−1)

=
1

150
(−10, 7,−1)

Step 3: Compute ∥Projna∥:

Required shortest distance=
1

150

√
102 + 72 + 12 =

1√
150

.
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6 Revision

i ( 1 ) Let u,v ∈ Rn. Prove the polarization identity

⟨u,v⟩ = 1

4

(
∥u+ v∥2 − ∥u− v∥2

)
( 2 ) Let u,v ∈ R3. Prove that if ⟨u,w⟩ = ⟨v,w⟩ for any w ∈ R3, then u = v.

( 3 ) Prove that for any u,v ∈ R3, we have u× v is orthogonal to both u and v.

( 4 ) Let x(t) and y(t) be any properly defined differentiable functions. Prove that

d

dt
⟨x(t),y(t)⟩ ≡ ⟨ d

dt
x(t),y(t)⟩+ ⟨x(t), d

dt
y(t)⟩.

by first principle.

ii

iii 2021 TDG Quiz 1 Q4

Let (V,<·, ·>) be an n-dimensional inner product space over the real numbers with n < ∞.

( 1 ) Show that for any orthonormal basis {ei}ni=1, it holds

x =

n∑
i=1

⟨x, ei⟩ei and
m∑
i=1

|⟨x, ei⟩|2 ≤ ∥x∥2 for all integers m such that 1 ≤ m ≤ n.

( 2 ) If {vi}ni=1 is an arbitrary basis for V , will the relation

x =

n∑
i=1

⟨x,vi⟩vi

hold? If yes, give a proof; otherwise, raise a counterexample.

iv (Problem set 2 challenging question) Let γ(s) be a differentiable vector-valued function on R2 with ∥γ′(s)∥ = 1.

Denote T(s) = γ′(s)

(a). Show that ⟨T′(s),T(s)⟩ = 0

(b). Denote κ(s) = ∥T′(s)∥, define N(s) by the relation: T′(s) = κ(s)N(s)

Compute ∥N(s)∥ and ⟨T(s),N(s)⟩, deduce that ⟨T(s),N′(s)⟩ = −κ(s)

(c). Does {T(s),N(s)} constitute a orthonormal basis for R2 ? Hence prove or disprove:

N′(s) = −κ(s)T(s)

Solution. i ( 1 ) Suppose u ̸= v, then we have u− v ̸= 0.
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Take w = u− v. Then by assumptions in the question, we have

0 =< u,w > − < v,w >

=< u− v,w >

=< u− v,u− v >

= ∥u− v∥2

> 0 (As we assume u− v ̸= 0.)

We have 0 > 0. Contradiction arises.

Then we have u = v

( 2 ) Let u = (u1, u2, u3) and v = (v1, v2, v3). Then we have

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1)

Then we have

< u,u× v > =< (u1, u2, u3), (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1) >

= u1u2v3 − u1u3v2 + u3u2v1 − u1u2v3 + u1v2u3 − u2v1u3

= 0

So we have u orthogonal to u× v.

Similarly, we have v orthogonal to u× v.

( 3 ) Simple proof:

Note that x(t) = (x1(t),x2(t),x3(t)) and y(t) = (y1(t),y2(t),y3(t)) for some differentiable function

x1(t), x2(t), x3(t), y1(t), y2(t), y3(t).

Then note that

d

dt
⟨x(t),y(t)⟩ = d

dt
[x1(t)y1(t) + x2(t)y2(t) + x3(t)y3(t)]

= x′
1(t)y1(t) + x1(t)y

′
1(t) + x′

2(t)y2(t) + x2(t)y
′
2(t) + x′

3(t)y3(t) + x3(t)y
′
3(t)

= x′
1(t)y1(t) + x′

2(t)y2(t) + x′
3(t)y3(t) + x1(t)y

′
1(t) + x2(t)y

′
2(t) + x3(t)y

′
3(t)

= ⟨x′(t),y(t)⟩+ ⟨x(t),y′(t)⟩

Proof by first principle:
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d

dt
⟨x(t),y(t)⟩ = lim

h→0

⟨x(t+ h),y(t+ h)⟩ − ⟨x(t),y(t)⟩
h

= lim
h→0

⟨x(t+ h),y(t+ h)⟩ − ⟨x(t),y(t+ h)⟩+ ⟨x(t),y(t+ h)⟩ − ⟨x(t),y(t)⟩
h

= lim
h→0

⟨x(t+ h)− x(t),y(t+ h)⟩+ ⟨x(t),y(t+ h)− y(t)⟩
h

= lim
h→0

⟨x(t+ h)− x(t)

h
,y(t+ h)⟩+ lim

h→0
⟨x(t), y(t+ h)− y(t)

h
⟩

= ⟨x′(t),y(t)⟩+ ⟨x(t),y′(t)⟩

The last step is due to the following lemma (And you don’t have to prove this in test/exam):

Lemma 6.1. If f, g : R → Rn are bounded continuous functions. Then for all a ∈ R, we have lim
x→a

<

f(x), g(x) >=< f(a), g(a) >.

This can be proved by Cauchy Schwartz inequality and understanding on continuous functions.

ii ( 1 ) Note that as {ei}ni=1 is an basis of V , there exists α1, α2, ..., αn ∈ R such that

x =

n∑
i=1

αiei.

Then by taking inner product on both sides with ek for 1 ≤ i ≤ n, we have

< x, ek > =<

n∑
i=1

αiei, ek >

< x, ek > =

n∑
i=1

αi < ei, ek >

< x, ek > = αk < ek, ek > +

n∑
i=1,i̸=k

αi < ei, ek >

< x, ek > = αk(1) +

n∑
i=1,i̸=k

(0) (By definition of orthonormal basis)

< x, ek > = αk
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Hence we have x =
n∑

i=1

⟨x, ei⟩ei Also, note that

∥x∥2 =< x,x >

=<

n∑
i=1

⟨x, ei⟩ei,
n∑

i=1

⟨x, ei⟩ei >

=

n∑
i=1

< ⟨x, ei⟩ei,
n∑

i=1

⟨x, ei⟩ei >

=

n∑
i=1

∥⟨x, ei⟩∥2 < ei, ei > (As {ei}ni=1 is an orthonormal basis.

=

m∑
i=1

∥⟨x, ei⟩∥2 +
n∑

i=m+1

∥⟨x, ei⟩∥2

≥
m∑
i=1

∥⟨x, ei⟩∥2 (As ∥⟨x, ei⟩∥2 ≥ 0 for all i = 1, 2, ..., n.)

( 2 ) The statement is false.

(Recall from tutorial notes 2, this is true only when the given basis is orthonormal).

Counter-example“ v1 = (2, 0),v2 = (0, 1).

Then note that (1, 0) =
1

2
(2, 0) + 0(0, 1) =

1

2
v1.

However, note that < (1, 0),v1 >=< (1, 0), (2, 0) >= 2 ̸= 1

2
.

iii Refer to solution of problem set 2 for more details.
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