1 Syllabus Overview

Hope you enjoyed the course! Before the final, I hope you will be able to:

- Ch1 Linear Algebra
 - Compute the basic operations: Addition, multiplication, dot and cross product relating to matrices and vectors.
 - Define and compute eigenvalues and eigenvectors given a 2×2 matrix.
 - Understand the geometrical meaning of various linear algebra terms: orthogonal/normal, linear independence, span, and basis, in the context of \mathbb{R}^2 and \mathbb{R}^3 .
- Ch2 for plane curves $(a, b) \to \mathbb{R}^2$ and space curves $(a, b) \to \mathbb{R}^3$:
 - Define and check whether a curve $\mathbf{r}(t)$ is regular/p.b.a.l. (parametrized by arc length).
 - Define and compute the length of a curve.
 - Compute a p.b.a.l parametrization given a (regular) curve, recall and apply the uniqueness theorem on p.b.a.l. curves.
 - Define and compute $\mathbf{T}, \mathbf{N}, \kappa$ for a regular plane curve.
 - Define and compute (everything in the Fernet Formula) $\mathbf{T}, \mathbf{N}, \mathbf{B}, \kappa, \tau$ for a space curve.
 - Apply the Fernet formula to prove easy results (e.g. show some curve is contained in a plane), sometimes by differentiating them with respect to a variable.
- Ch3 Given surface S and parametrization $\mathbf{x}(u, v)$:
 - Check that a parametrization is regular.
 - Define and compute $I, II, K = \det(II) / \det(I)$ for a surface at any point $p \in S$.
 - Define and compute Mean curvature H and show a surface is a minimal surface (H = 0 for all points p).
 - Understand the definition of isometry and theorema egregium.
 - Compute $\iint_S K \, dA$, recall and apply the Gauss-Bonnet Theorem.

Note that most are Define and compute questions, sometimes we also ask you to show or proof something, those are harder.

2 Question Bank

Please do Q1, 2, 4, 7, 10 ASAP.

- 1. Are the following curves regular? Explain your answer.
 - (a) $\mathbf{r}: (-1, 1) \to \mathbb{R}^2:, \mathbf{r}(t) = (t^2, t^3).$
 - (b) $\mathbf{r}: (0,2) \to \mathbb{R}^2:, \mathbf{r}(t) = (t^2, t^3).$
 - (c) $\mathbf{r}: (-1,1) \to \mathbb{R}^3:, \mathbf{r}(t) = (t, t^2 + 1, t 1).$
- 2. Find the curvature and torsion of $\mathbf{r}(t) = (t, t^2, \frac{2}{3}t^3)$, and the vectors $\mathbf{T}, \mathbf{N}, \mathbf{B}$.
- 3. (Challenging.) Let $\mathbf{r} : (a, b) \to \mathbb{R}^3$ be a regular space curve parametrized by arc length. Assume that the curvature and torsion are nowhere zero, i.e. $\kappa(s) \neq 0, \tau(s) \neq 0$, for all $s \in (a, b)$, and there exists a unit vector $\mathbf{v} \in \mathbb{R}^3$ such that $\mathbf{r}'(s)$ makes a constant angle with \mathbf{v} for all $s \in (a, b)$.
 - (a) Show that $\mathbf{n}(s) \cdot \mathbf{v} = 0$ for all $s \in (a, b)$.
 - (b) Show that the angle between \mathbf{v} and binormal vector \mathbf{b} is constant. (Hint: You may write \mathbf{v} as a linear combination of $\mathbf{t}, \mathbf{n}, \mathbf{b}$.)
 - (c) Show that for some $c \in \mathbb{R}$, we have $\frac{\kappa(s)}{\tau(s)} = c$ for every $s \in (a, b)$.
- 4. (2013, Exam Q2) By considering the function

$$\boldsymbol{f}(s) := \boldsymbol{\alpha}(s) + \frac{1}{\kappa(s)} \mathbf{N}(s),$$

show that if $\alpha(s)$ is a unit speed curve with constant curvature $\kappa > 0$ and torsion $\tau(s) \equiv 0$, then α is part of a circle with radius $\frac{1}{\kappa}$. You may use the fact that a curve with positive curvature and zero torsion is a plane curve.

5. Let S be the surface parametrized by

$$\mathbf{x} : \mathbb{R}^2 \to \mathbb{R}^3, \quad \mathbf{x}(u, v) = (u + v, u - v, uv).$$

With respect to this parametrization:

- (a) Show that \mathbf{x} is regular.
- (b) Find the first and second fundamental form of S.
- (c) Find the mean and Gaussian curvatures of S.
- 6. (In lecture.) Let S be the surface parametrized by $S = \frac{1}{2} \int \frac{1}{2$

$$\mathbf{x}: (-\pi, \pi) \times \mathbb{R} \to \mathbb{R}^3, \quad \mathbf{x}(u, v) = (\cos(u)\cosh(v), \sin(u)\cosh(v), v).$$

With respect to this parametrization,

- (a) Define and compute the Gauss map of this surface.
- (b) Show that S is a minimal surface.

(You may use any of the identities $\frac{d}{dt}\sinh(t) = \cosh(t), \frac{d}{dt}\cosh(t) = \sinh(t)$, and $\cosh^2(t) - \sinh^2(t) = 1.$)

7. Let S be the surface parametrized by

$$\mathbf{x}(u,v) = (v,vu,vu^2)$$

for positive real numbers u, v.

- (a) Show that \mathbf{x} is regular.
- (b) Find the principal curvature, principal vectors, mean curvature, gaussian curvature at p = (1, 1, 1) in S.
- 8. (2017 Final Exam, Q4).
 - (a) Let $\mathbf{x}(u, v) = (f_1(u, v), f_2(u, v), f_3(u, v))$ be a regular surface such that the coefficients of the First Fundamental Form satisfy the equations E = G, E, G are always non-zero, and F = 0, where f_1, f_2 and f_3 are smooth functions. Show that
 - i. $\langle \mathbf{x}_{uu} + \mathbf{x}_{vv}, \mathbf{n} \rangle = -2EH$, where *H* and **n** are mean curvature and unit surface normal vector of **x** respectively.
 - ii. If the functions f_1, f_2, f_3 satisfy

$$\frac{\partial^2 f_i}{\partial u^2} + \frac{\partial^2 f_i}{\partial v^2} = 0 \text{ for } i = 1, 2, 3,$$

then $\mathbf{x}(u, v)$ is a minimal surface.

(b) Further let $\mathbf{y}(u, v) = (g_1(u, v), g_2(u, v), g_3(u, v))$ be a regular surface, where g_1, g_2 and g_3 are smooth functions. Let E^y, F^y, G^y be the First Fundamental Form of y. Suppose $E^y = G^y, E^y, G^y$ are always non-zero and $F^y = 0$, both \mathbf{x}, \mathbf{y} are minimal surfaces and the coordinates of \mathbf{x}, \mathbf{y} satisfy

$$\frac{\partial f_i}{\partial u} = \frac{\partial g_i}{\partial v}$$
 and $\frac{\partial f_i}{\partial v} = -\frac{\partial g_i}{\partial u}$ for $i = 1, 2, 3$.

Let $\mathbf{z}^t(u, v) = (\cos(t))\mathbf{x}(u, v) + (\sin(t))\mathbf{y}(u, v)$, where $t \in \mathbb{R}$. Using (a)(ii), or otherwise, show that \mathbf{z}^t also is a minimal surface.

9. Let S be the surface parametrized by $\mathbf{x}(u, v) = (\cos(u), \sin(u), v)$ for all $u, v \in \mathbb{R}$. Find all unit-speed smooth curves

$$\mathbf{r}: \mathbb{R} \to S \subset \mathbb{R}^3, \quad \mathbf{r}(t) = \mathbf{x}(u(t), v(t)),$$

so that for all $t, \mathbf{r}'(t)$ is a principal vector of S at $\mathbf{r}(t)$.

- 10. (2018, Final Q4) Let M be a smooth closed surface with Gauss curvature K.
 - (a) If K < 0 entirely on M, what is the minimum genus of M?
 - (b) If K < -4 entirely on M and the Euler characteristic of M is -6, show that the surface area of M is not more than 3π .