SAYT1134 Towards Differential Geometry Group 3 Tutorial 2

Thomas Lam

August 12, 2024

1 Cross Product

- 1. Find $\mathbf{u} \times \mathbf{v}$, where
 - (a) $\mathbf{u} = (1, 0, 2), \mathbf{v} = (2, 3, 4)$
 - (b) $\mathbf{u} = (-8, -2, -4), \mathbf{v} = (2, 2, 1)$
- 2. Find the area of triangle determined by the points P, Q, and R.
 - (a) P(1, -1, 2), Q(2, 0, -1), R(0, 2, 1)
 - (b) P(1,1,1), Q(2,1,3), R(3,-1,1)
 - (c) P(2, -2, 1), Q(3, -1, 2), R(3, -1, 1)
- 3. Find a unit vector perpendicular to plane PQR, where P, Q, and R are points in Question 2.
- 4. For the following \mathbf{u}, \mathbf{v} and \mathbf{w} , verify that

$$\langle \mathbf{u}, \mathbf{v} imes \mathbf{w}
angle = \langle \mathbf{v}, \mathbf{w} imes \mathbf{u}
angle = \langle \mathbf{v}, \mathbf{w} imes \mathbf{u}
angle.$$

(a)
$$\mathbf{u} = (1, -1, 1), \mathbf{v} = (2, 1, -2).\mathbf{w} = (-1, 2, -1)$$

(b)
$$\mathbf{u} = (2, 1, 0), \mathbf{v} = (2, -1, 1), \mathbf{w} = (1, 0, 2)$$

(c) $\mathbf{u} = (1, 1, -2), \mathbf{v} = (-1, 0, -1), \mathbf{w} = (2, 4, -2)$

2 More about Integration

1. Evaluate
$$\int_{-\pi/2}^{\pi/2} x^3 \cos x \, dx$$

2. Evaluate $\int \tan^4 x \, dx$

3. Evaluate
$$\int \sec^3 x \, dx$$

4. Evaluate $\int \sqrt{1 - 9t^2} \, dt$
5. Evaluate $\int \frac{1}{x^2 \sqrt{x^2 - 1}} \, dx, \, x > 1$
6. Evaluate $\int \sqrt{\frac{4 - x}{x}} \, dx$ (Hint: Let $x = u^?$)

3 Curves

- 1. Verify if the function $\mathbf{r}(t) = (t, t^2), t \in \mathbb{R}$ is a regular parametrized curve.
- 2. Verify if the function $\mathbf{r}(t) = (t^3 4t, t^2 4), t \in \mathbb{R}$ is a regular parametrized curve. Also, show that it is not injective.
- 3. What is the parametrization of the line through (1, 0, 9) and (5, 4, 2)?
- 4. Find a parametrized curve $\mathbf{r}(t)$ whose trace is the circle $x^2 + y^2 = 1$ such that $\mathbf{r}(t)$ runs clockwise around the circle with $\mathbf{r}(0) = (0, 1)$.
- 5. Let $\mathbf{r}(t)$ be a parametrized curve which does not pass through the origin. If $\mathbf{r}(t_0)$ is the point of the trace of \mathbf{r} closest to the origin and $\mathbf{r}'(t_0) \neq \mathbf{0}$, show that the position vector $\mathbf{r}(t_0)$ is orthogonal to $\mathbf{r}'(t_0)$.
- 6. Let $\mathbf{r}: I \to \mathbb{R}^3$ be a parametrized curve and let $\mathbf{v} \in \mathbb{R}^3$ be a fixed vector. Assume that $\mathbf{r}'(t)$ is orthogonal to \mathbf{v} for all $t \in I$ and that $\mathbf{r}(0)$ is also orthogonal to \mathbf{v} . Prove that $\mathbf{r}(t)$ is orthogonal to \mathbf{v} for all $t \in I$.
- 7. Let $\mathbf{r}: I \to \mathbb{R}^3$ be a parametrized curve, with $\mathbf{r}'(t) \neq 0$ for all $t \in I$. Show that $|\mathbf{r}(t)|$ is a nonzero constant if and only if $\mathbf{r}(t)$ is orthogonal to $\mathbf{r}'(t)$ for all $t \in I$.

4 Arc length

- 1. Show that $\mathbf{r}(s) = (a\cos(\frac{s}{c}), a\sin(\frac{s}{c}), b\frac{s}{c})$ is parametrized by arc length, where $c^2 = a^2 + b^2$.
- 2. Consider $\mathbf{r}(t) = (\cos(5t), \sin(5t), 12t)$. What is the speed of \mathbf{r} ? Find the arc-length parametrization $\mathbf{r}(s)$.
- 3. Compute the arc-length of logarithmic spiral given by $\mathbf{r}(t) = (ae^{bt}\cos t, ae^{bt}\sin t, 0)$