3.6 Gauss-Bonnet theorem

Theorem 3.6.6 (Gauss-Bonnet theorem). Let S be a simple closed reqular The Thearem N\O‘J‘Qﬂ

surface in R3. Then ro“\ 3exme"r%( <Y with
// KdA = 2mx(95)
s 3(0&7& Q\r\a?q, %X

Definition 3.6.1 (Euler characteristic). The Euler characteristic of a
closed surface S is

X(S)=v—e+f

where v, e and f are the number of vertices, edges and faces of a polyhedron
modeled on S.
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Theorem 3.6.2 (Area of polygon on unit sphere). Let «, 5, be the interior

angles of a triangle, with edges being great circular a,rc on the unit sphere
and A be the area of the triangle. Then

a+B+y=A+m. (D

More generally, Let o, o, ..., «, be the interior angles of a polygon with n
edges, which are great circular arcs, on the unit sphere and A be the area of
the polygon. Then

apt+as+--+a, =A+ (n—2)7. @
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Theorem 3.6.3 (Euler characteristic of sphere). A polyhedron which is mod-
eled on a sphere has Euler characteristic y = 2.

Proof. Consider a polyhedron modeled on the unit sphere. By deforming
the edges, we may assume that the edges are great circular arcs on the unit

sphere.
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Genus of closed surfaces (Number of ‘hole’)

K= 2 X =0 X=-2 X = -

Theorem 3.6.4 (Euler characteristic of simple closed surface). Let S be a
simple closed surface of genus g. Then the Euler characteristic of S s

x(S) =2 —2g.
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Let S; and Sy be two simple closed surface in R®. Let f : S; — Ss be a c {osed meaws

continuous map from 5y to S;. For ¢ € 53, we define the degree of f at g to  bounded |
be the integer

no bovw\o(avg/

deg(f, q) = number of preimages of ¢ preserving orientation
4= pumber of preimages of ¢ reversing orientation
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deg(n) =1—g.

Theorem 3.6.5 (Degree of Gauss map of simple closed regular surface). Let

S be a simple closed surface of genus g. The the degree of Gauss map of S is
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Theorem 3.6.6 (Gauss-Bonnet theorem). Let S be a simple closed reqular

surface in R®. Then
// KdA = 27x(S)
JJs

where K 1is the Gaussian curvature, x(S) is the Euler characteristic of S
and dA = +/det(I)dudv is the surface area element. In particular, if S is
h,()m(z()m()'r'pluf.( to the sphere S*, then x(S) = 2 and

// KdA = 4.
JJs
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