MMAT5390 Mathematical Image Processing
 Final Practice Solutions

Solutions prepared by TAs, for your reference only.

1. The Butterworth high-pass filter H with radius D_{0} and order n is defined as

$$
H(u, v)=\frac{1}{1+\left(D_{0} / D(u, v)\right)^{n}},
$$

where $D(u, v)=u^{2}+v^{2}$. Given an image $I=(I(m, n))_{0 \leq m, n \leq 2 N}$ and $N>100$, apply Butterworth high-pass filter on $\operatorname{DFT}(I)=(\hat{I}(u, v))_{0 \leq u, v \leq 2 N}$ then get $G(u, v)$. Suppose

$$
G(3,4)=\frac{1}{2} \hat{I}(3,4) \text { and } G(2 N-6,8)=\frac{16}{17} \hat{I}(2 N-6,8),
$$

where $\hat{I}(3,4) \neq 0$ and $\hat{I}(2 N-6,8) \neq 0$. Find D_{0} and n.
Solution: The given information implies

$$
H(3,4)=\frac{1}{2} \text { and } H(2 N-6,8)=\frac{16}{17} .
$$

After centralization, we have $H(-6,8)=H(2 N-6,8)=\frac{16}{17}$ Hence

$$
\left\{\begin{array} { l l }
{ \frac { 2 5 ^ { n } } { D _ { 0 } ^ { n } + 2 5 ^ { n } } } & { = \frac { 1 } { 2 } , } \\
{ \frac { 1 0 0 ^ { n } } { D _ { 0 } ^ { n } + 1 0 0 ^ { n } } } & { = \frac { 1 6 } { 1 7 } , }
\end{array} \text { and thus } \left\{\begin{array}{ll}
25^{n} & =D_{0}^{n}, \\
4^{n} \cdot 25^{n} & =16 D_{0}^{n} .
\end{array}\right.\right.
$$

Then $4^{n}=16$. Hence $n=2$ and then $D_{0}=25$.
2. Consider a 4×4 periodically extended image $I=(I(k, l))_{0 \leq k, l \leq 3}$ given by:

$$
I=\left(\begin{array}{llll}
a & b & a & b \\
b & a & b & a \\
a & b & a & b \\
b & a & b & a
\end{array}\right),
$$

where a and b are distinct positive numbers.
Let $h=(h(k, l))_{0 \leq k, l \leq 3}=\frac{1}{8}\left(\begin{array}{cccc}4 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$, which is periodically extended.
The Gaussian low-pass filter H of variance σ^{2} is defined by:

$$
H(u, v)=\exp \left(-\frac{u^{2}+v^{2}}{\sigma^{2}}\right) .
$$

Let $I_{1}(u, v)=H_{1}(u, v) \operatorname{DFT}(I)(u, v)$, where the H_{1} is the Gaussian low-pass filter of variance $a b$. Suppose $I_{1}(2,2)=e^{-\frac{1}{4}} D F T(I)(2,2)$ and $h * I(2,1)=6$. Find a and b.
Solution: Since $a \neq b$,

$$
\operatorname{DFT}(I)(2,2)=\frac{a-b}{2} \neq 0 .
$$

Hence

$$
\begin{cases}\exp \left(-\frac{8}{a b}\right)=\exp \left(-\frac{1}{4}\right) & \Longrightarrow a b=32 \\ \frac{1}{8}(4 a+4 b)=6 & \Longrightarrow a+b=12\end{cases}
$$

Hence $(a, b)=(4,8)$ or $(8,4)$.
3. Compute the degradation functions in the frequency domain that correspond to the following $M \times N$ convolution kernels h, i.e. find $H \in M_{M \times N}(\mathbb{C})$ such that

$$
D F T(h * f)(u, v)=H(u, v) D F T(f)(u, v)
$$

for any periodically extended $f \in M_{M \times N}(\mathbb{R})$:
(a) Assuming integer k satisfies $k \leq \min \left\{\frac{M}{2}, \frac{N}{2}\right\}$,

$$
h_{1}(x, y)= \begin{cases}\frac{1}{(2 k+1)^{2}} & \text { if } \operatorname{dist}(x, M \mathbb{Z}) \leq k \text { and } \operatorname{dist}(y, N \mathbb{Z}) \leq k \\ 0 & \text { otherwise }\end{cases}
$$

(b) Letting $r>1$,

$$
h_{2}(x, y)= \begin{cases}\frac{r}{r+4} & \text { if } D(x, y)=0 \\ \frac{1}{r+4} & \text { if } D(x, y)=1 \\ 0 & \text { otherwise }\end{cases}
$$

(c)

$$
h_{3}(x, y)= \begin{cases}\frac{1}{4} & \text { if } D(x, y)=0 \\ \frac{1}{8} & \text { if } D(x, y)=1 \\ \frac{1}{16} & \text { if } D(x, y)=2 \\ 0 & \text { otherwise }\end{cases}
$$

(d)

$$
h_{4}(x, y)= \begin{cases}-4 & \text { if } D(x, y)=0 \\ 1 & \text { if } D(x, y)=1 \\ 0 & \text { otherwise }\end{cases}
$$

(e) Letting $a, b \in \mathbb{Z}$ and $T \in \mathbb{N} \backslash\{0\}$ such that $|a|(T-1)<M$ and $|b|(T-1)<N$,

$$
h_{5}(x, y)= \begin{cases}\frac{1}{T} & \text { if }(x, y) \in\{(a t, b t): t=0,1, \cdots, T-1\} \\ 0 & \text { otherwise }\end{cases}
$$

Solution: Recall that for any $f \in M_{M \times N}(\mathbb{R}), \operatorname{DFT}(h * f)=M N \cdot D F T(h) \odot D F T(f)$; hence $H=M N \cdot \operatorname{DFT}(h)$.
(a)

$$
\begin{aligned}
H_{1}(u, v) & =\sum_{x=-k}^{k} \sum_{y=-k}^{k} \frac{1}{(2 k+1)^{2}} e^{-2 \pi j\left(\frac{u x}{M}+\frac{v y}{N}\right)}=\frac{1}{(2 k+1)^{2}} \sum_{x=-k}^{k} e^{-2 \pi j \frac{u x}{M}} \sum_{y=-k}^{k} e^{-2 \pi j \frac{v y}{N}} \\
& =\frac{1}{(2 k+1)^{2}}\left[1+2 \sum_{x=1}^{k} \cos \frac{2 \pi u x}{M}\right]\left[1+2 \sum_{y=1}^{k} \cos \frac{2 \pi v y}{N}\right]
\end{aligned}
$$

(b)

$$
H_{2}(u, v)=\frac{r}{r+4}+\frac{1}{r+4}\left(e^{-2 \pi j \frac{u}{M}}+e^{2 \pi j \frac{u}{M}}+e^{-2 \pi j \frac{v}{N}}+e^{2 \pi j \frac{v}{N}}\right)=\frac{r+2\left(\cos \frac{2 \pi u}{M}+\cos \frac{2 \pi v}{N}\right)}{r+4}
$$

(c)

$$
\begin{aligned}
H_{3}(u, v)= & \frac{1}{4}+\frac{1}{8}\left(e^{-2 \pi j \frac{u}{M}}+e^{2 \pi j \frac{u}{M}}+e^{-2 \pi j \frac{v}{N}}+e^{2 \pi j \frac{v}{N}}\right) \\
& +\frac{1}{16}\left(e^{-2 \pi j\left(\frac{u}{M}+\frac{v}{N}\right)}+e^{-2 \pi j\left(\frac{u}{M}-\frac{v}{N}\right)}+e^{-2 \pi j\left(-\frac{u}{M}+\frac{v}{N}\right)}+e^{-2 \pi j\left(-\frac{u}{M}-\frac{v}{N}\right)}\right) \\
= & \frac{1}{4}+\frac{1}{4}\left(\cos \frac{2 \pi u}{M}+\cos \frac{2 \pi v}{N}\right)+\frac{1}{4} \cos \frac{2 \pi u}{M} \cos \frac{2 \pi v}{N} \\
= & \frac{1}{4}\left(\cos \frac{2 \pi u}{M}+1\right)\left(\cos \frac{2 \pi v}{N}+1\right) \\
= & \cos ^{2} \frac{\pi u}{M} \cos ^{2} \frac{\pi v}{N} .
\end{aligned}
$$

(d)

$$
\begin{aligned}
H_{4}(u, v) & =-4+e^{-2 \pi j \frac{u}{M}}+e^{2 \pi j \frac{u}{M}}+e^{-2 \pi j \frac{v}{N}}+e^{2 \pi j \frac{v}{N}} \\
& =-4+2 \cos \frac{2 \pi u}{M}+2 \cos \frac{2 \pi v}{N} \\
& =-4\left(\sin ^{2} \frac{\pi u}{M}+\sin ^{2} \frac{\pi v}{N}\right) .
\end{aligned}
$$

(e)

$$
\begin{aligned}
H_{5}(u, v) & =\frac{1}{T} \sum_{t=0}^{T-1} e^{-2 \pi j\left(\frac{a t u}{M}+\frac{b t v}{N}\right)} \\
& = \begin{cases}\frac{1}{T} \cdot \frac{1-e^{-2 \pi j T\left(\frac{a u}{M}+\frac{b v}{N}\right)}}{1-e^{-2 \pi j\left(\frac{a u}{M}+\frac{b v}{N}\right)}} & \text { if } \frac{a u}{M}+\frac{b v}{N} \notin \mathbb{Z}, \\
1 & \text { otherwise },\end{cases} \\
& = \begin{cases}\frac{1}{T} e^{-\pi j(T-1)\left(\frac{a u}{M}+\frac{b v}{N}\right) \frac{e^{\pi j T\left(\frac{a u}{M}+\frac{b v}{N}\right)}-e^{-\pi j T\left(\frac{a u}{M}+\frac{b v}{N}\right)}}{e^{\pi j\left(\frac{a u}{M}+\frac{b v}{N}\right)}-e^{-\pi j\left(\frac{a u}{M}+\frac{b v}{N}\right)}}} \text { if } \frac{a u}{M}+\frac{b v}{N} \notin \mathbb{Z}, \\
1 & \text { otherwise, }\end{cases} \\
& = \begin{cases}\frac{1}{T} e^{-\pi j(T-1)\left(\frac{a u}{M}+\frac{b v}{N}\right) \frac{\sin \left(\pi T\left(\frac{a u}{M}+\frac{b v}{N}\right)\right)}{\sin \left(\pi\left(\frac{a u}{M}+\frac{b v}{N}\right)\right)}} & \text { if } \frac{a u}{M}+\frac{b v}{N} \notin \mathbb{Z}, \\
1 & \text { otherwise. }\end{cases}
\end{aligned}
$$

4. For any periodically extended $N \times N$ image f, define

$$
\begin{aligned}
G_{x}(f)(x, y) & =\frac{1}{4} f(x+1, y)+\frac{1}{2} f(x, y)+\frac{1}{4} f(x-1, y) \\
\text { and } G_{y}(f)(x, y) & =\frac{1}{4} f(x, y+1)+\frac{1}{2} f(x, y)+\frac{1}{4} f(x, y-1)
\end{aligned}
$$

(a) Find an $N \times N$ image h such that for any periodically extended $N \times N$ image f,

$$
h * f=G_{x} \circ G_{y}(f) .
$$

(b) Let $H(u, v)$ be the LPF such that

$$
D F T(h * f)(u, v)=H(u, v) D F T(f)(u, v)
$$

where h is the convolution kernel from (a). Using H, perform unsharp masking (i.e. $k=1$) on the following periodically extended 4×4 image

$$
f=\left(\begin{array}{llll}
4 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Solution:

(a) Note that

$$
G_{x}(f)(x, y)=h_{x} * f(x, y) \text { and } G_{y}(f)(x, y)=h_{y} * f(x, y)
$$

where

$$
h_{x}(x, y)= \begin{cases}\frac{1}{2} & \text { if }(x, y)=(0,0) \\ \frac{1}{4} & \text { if }(x, y)=(-1,0) \text { or }(1,0) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
h_{y}(x, y)= \begin{cases}\frac{1}{2} & \text { if }(x, y)=(0,0) \\ \frac{1}{4} & \text { if }(x, y)=(0,-1) \text { or }(0,1) \\ 0 & \text { otherwise }\end{cases}
$$

Hence $G_{x}\left(G_{y}(f)\right)=h_{x} *\left(h_{y} * f\right)=\left(h_{x} * h_{y}\right) * f=h * f$, where

$$
\begin{aligned}
h(x, y) & =h_{x} * h_{y}(x, y) \\
& = \begin{cases}\frac{1}{4} & \text { if }(x, y)=(0,0) \\
\frac{1}{8} & \text { if }(x, y)=(0,-1) \text { or }(-1,0) \text { or }(1,0) \text { or }(0,1) \\
\frac{1}{16} & \text { if }(x, y)=(-1,-1) \text { or }(1,-1) \text { or }(-1,1) \text { or }(1,1) \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

(b) Recall that $D F T(h * f)(u, v)=N^{2} D F T(h)(u, v) D F T(f)(u, v)$.

Hence to perform unsharp masking on $f \in M_{4 \times 4}$,

$$
\left.\begin{array}{rl}
H & =16 D F T(h) \\
& =\frac{1}{16}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right)\left(\begin{array}{cccc}
4 & 2 & 0 & 2 \\
2 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
2 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -j & -1
\end{array}\right) j \\
1 & -1 \\
1 & 1
\end{array}\right)-1
$$

On the other hand,

$$
\left.\begin{array}{rl}
\operatorname{DFT}(f) & =\frac{1}{16}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right)\left(\begin{array}{cccc}
4 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -j & -1
\end{array}\right] \\
1 & -1 \\
1 & -1 \\
1 & j \\
-1 & -j
\end{array}\right) .\left(\begin{array}{llll}
6 & 1 & 0 & 1 \\
4 & 1 & 0 & 1 \\
2 & 1 & 0 & 1 \\
4 & 1 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right) .
$$

$\tilde{F}(u, v)=\operatorname{DFT}(f)(u, v)[2-H(u, v)]$ and thus

$$
\begin{aligned}
& \tilde{F}=\frac{1}{32}\left(\begin{array}{cccc}
4 & 3 & 2 & 3 \\
3 & 2 & 1 & 2 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 2
\end{array}\right) \odot\left(\begin{array}{cccc}
4 & 6 & 8 & 6 \\
6 & 7 & 8 & 7 \\
8 & 8 & 8 & 8 \\
6 & 7 & 8 & 7
\end{array}\right) \\
&=\frac{1}{32}\left(\begin{array}{cccc}
16 & 18 & 16 & 18 \\
18 & 14 & 8 & 14 \\
16 & 8 & 0 & 8 \\
18 & 14 & 8 & 14
\end{array}\right)=\frac{1}{16}\left(\begin{array}{cccc}
8 & 9 & 8 & 7 \\
9 & 7 & 4 & 7 \\
8 & 4 & 0 & 4 \\
9 & 7 & 4 & 7
\end{array}\right) \\
&\text { and } \left.\begin{array}{rl}
\tilde{f} & =\frac{1}{16}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right)\left(\begin{array}{cccc}
8 & 9 & 8 & 7 \\
9 & 7 & 4 & 7 \\
8 & 4 & 0 & 4 \\
9 & 7 & 4 & 7
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right) \\
& =\frac{1}{16}\left(\begin{array}{cccc}
34 & 27 & 16 & 27 \\
0 & 5 & 8 & 5 \\
-2 & -1 & 0 & -1 \\
0 & 5 & 8 & 5
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & j & -1 \\
1 & -1 & 1 \\
1 & -j \\
1 & -j & -1
\end{array}\right) j
\end{array}\right) \\
&=\frac{1}{16}\left(\begin{array}{cccc}
104 & 18 & -4 & 18 \\
18 & -8 & -2 & -8 \\
-4 & -2 & 0 & -2 \\
18 & -8 & -2 & -8
\end{array}\right) \\
&=\frac{1}{8}\left(\begin{array}{cccc}
52 & 9 & -2 & 9 \\
9 & -4 & -1 & -4 \\
-2 & -1 & 0 & -1 \\
9 & -4 & -1 & -4
\end{array}\right) .
\end{aligned}
$$

5. Let $W_{N}(n, k)=\frac{1}{\sqrt{N}} e^{2 \pi j \frac{n k}{N}}$ for $0 \leq n, k \leq N-1$ and $W=W_{N} \otimes W_{N}$. Suppose $N=4$, we have following problems:
(a) Prove that $W^{-1}=\overline{W_{N}} \otimes \overline{W_{N}}$.
(b) Show that $W^{-1} \mathcal{S}(f)=N \mathcal{S}(\hat{f})$ for any $f \in M_{N \times N}(\mathbb{C})$, where $\hat{f}=\operatorname{DFT}(f)$.

Solution: Method 1 (for general N):
(a) Recall that the definition of Kronecker product is

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \cdots & a_{1 N} B \\
a_{21} B & a_{22} B & \cdots & a_{2 N} B \\
\vdots & \vdots & & \vdots \\
a_{N 1} B & a_{N 2} B & \cdots & a_{N N} B
\end{array}\right)
$$

We have
$W=W_{N} \otimes W_{N}=\left(\begin{array}{cccc}\frac{1}{\sqrt{N}} e^{2 \pi j \frac{0 \cdot 0}{N}} \cdot W_{N} & \frac{1}{\sqrt{N}} e^{2 \pi j \frac{0 \cdot 1}{N}} \cdot W_{N} & \cdots & \frac{1}{\sqrt{N}} e^{2 \pi j \frac{0 \cdot(N-1)}{N}} \cdot W_{N} \\ \frac{1}{\sqrt{N}} e^{2 \pi j \frac{1 \cdot 0}{N}} \cdot W_{N} & \frac{1}{\sqrt{N}} e^{2 \pi j \frac{1 \cdot 1}{N}} \cdot W_{N} & \cdots & \frac{1}{\sqrt{N}} e^{2 \pi j \frac{1 \cdot(N-1)}{N}} \cdot W_{N} \\ \vdots & \vdots & & \vdots \\ \frac{1}{\sqrt{N}} e^{2 \pi j \frac{(N-1) \cdot 0}{N}} \cdot W_{N} & \frac{1}{\sqrt{N}} e^{2 \pi j \frac{(N-1) \cdot 1}{N}} \cdot W_{N} & \cdots & \frac{1}{\sqrt{N}} e^{2 \pi j \frac{(N-1) \cdot(N-1)}{N}} \cdot W_{N}\end{array}\right)$
And rewrite it as $W=\left(\frac{1}{\sqrt{N}} e^{2 \pi j \frac{n \cdot k}{N}} \cdot W_{N}\right)_{0 \leq n, k \leq N-1}$
Since $\overline{W_{N}}=\left(\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{n k}{N}}\right)_{0 \leq n, k \leq N-1}$, we know that
$\overline{W_{N}} \otimes \overline{W_{N}}=\left(\begin{array}{cccc}\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{0 \cdot 0}{N}} \cdot \overline{W_{N}} & \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{0 \cdot 1}{N}} \cdot \overline{W_{N}} & \cdots & \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{0 \cdot(N-1)}{N}} \cdot \overline{W_{N}} \\ \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{1 \cdot 0}{N}} \cdot \overline{W_{N}} & \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{1 \cdot 1}{N}} \cdot \overline{W_{N}} & \cdots & \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{1 \cdot(N-1)}{N}} \cdot \overline{W_{N}} \\ \vdots & \vdots & & \vdots \\ \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{(N-1) \cdot 0}{N}} \cdot \overline{W_{N}} & \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{(N-1) \cdot 1}{N}} \cdot \overline{W_{N}} & \cdots & \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{(N-1) \cdot(N-1)}{N}} \cdot \overline{W_{N}}\end{array}\right)$
And rewrite it as $\overline{W_{N}} \otimes \overline{W_{N}}=\left(\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{n \cdot k}{N}} \cdot \overline{W_{N}}\right)_{0 \leq n, k \leq N-1}$
Using block-matrix multiplication, we can calculate

$$
\begin{aligned}
W \cdot\left(\overline{W_{N}} \otimes \overline{W_{N}}\right) & =\left(\frac{1}{\sqrt{N}} e^{2 \pi j \frac{n \cdot k}{N}} \cdot W_{N}\right)_{0 \leq n, k \leq N-1}\left(\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{n \cdot k}{N}} \cdot \overline{W_{N}}\right)_{0 \leq n, k \leq N-1} \\
& =\left(\sum_{p=0}^{N-1} \frac{1}{\sqrt{N}} e^{2 \pi j \frac{n \cdot p}{N}} \cdot W_{N} \cdot \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{p \cdot k}{N}} \cdot \overline{W_{N}}\right)_{0 \leq n, k \leq N-1} \\
& =\left(\sum_{p=0}^{N-1} \frac{1}{N} e^{2 \pi j \frac{(n-k) \cdot p}{N}} \cdot W_{N} \overline{W_{N}}\right)_{0 \leq n, k \leq N-1} \\
& =I_{N^{2}}
\end{aligned}
$$

Therefore, $W^{-1}=\overline{W_{N}} \otimes \overline{W_{N}}$.
(b) Note that $f=\left(f_{i, j}\right)_{0 \leq i, j \leq N-1} \in M_{N \times N}(\mathbb{C})$ then

$$
\mathcal{S}(f)=\left(\begin{array}{llllllll}
f_{0,0} & f_{1,0} & \cdots & f_{N-1,0} & \cdots & f_{0, N-1} & f_{1, N-1} & \cdots
\end{array} f_{N-1, N-1}\right)^{T} \in M_{N^{2} \times 1}(\mathbb{C})
$$

From (a) we know that $W^{-1}=\overline{W_{N}} \otimes \overline{W_{N}}=\left(\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{n \cdot k}{N}} \cdot \overline{W_{N}}\right)_{0 \leq n, k \leq N-1} \in M_{N^{2} \times N^{2}}(\mathbb{C})$

Then, $W^{-1} \mathcal{S}(f) \in M_{N^{2} \times 1}(\mathbb{C})$, and its l-th entry is

$$
\begin{aligned}
& \left(W^{-1} \mathcal{S}(f)\right)_{l}=W^{-1}(l,:) \cdot \mathcal{S}(f) \\
& =\left(\begin{array}{c}
\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\left\lfloor\frac{l}{N}\right\rfloor \cdot 0}{N}} \cdot \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\bmod _{N}(l) \cdot 0}{N}} \\
\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\left\lfloor\frac{l}{N}\right\rfloor \cdot 0}{N}} \cdot \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\bmod _{N}(l) \cdot 1}{N}} \\
\vdots \\
\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\left\lfloor\frac{l}{N}\right\rfloor \cdot 0}{N}} \cdot \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\bmod _{N}(l) \cdot(N-1)}{N}} \\
\vdots \\
\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\left\lfloor\frac{l}{N}\right\rfloor \cdot(N-1)}{N}} \cdot \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\bmod _{N}(l) \cdot 0}{N}} \\
\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\left\lfloor\frac{l}{N}\right\rfloor \cdot(N-1)}{N}} \cdot \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\bmod _{N}(l) \cdot 1}{N}} \\
\vdots \\
\frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\left\lfloor\frac{l}{N}\right\rfloor \cdot(N-1)}{N}} \cdot \frac{1}{\sqrt{N}} e^{-2 \pi j \frac{\bmod _{N}(l) \cdot(N-1)}{N}}
\end{array}\right)^{T}\left(\begin{array}{c}
f_{0,0} \\
f_{1,0} \\
\vdots \\
f_{N-1,0} \\
\vdots \\
f_{0, N-1} \\
f_{1, N-1} \\
\vdots \\
f_{N-1, N-1}
\end{array}\right) \\
& =\sum_{p=0}^{N-1} \sum_{q=0}^{N-1} \frac{1}{N} e^{-2 \pi j \frac{\left\lfloor\frac{l}{N}\right\rfloor \cdot q+\bmod _{N}(l) \cdot p}{N}} f_{p, q} \\
& \text { From } \hat{f}_{p, q}=\frac{1}{N^{2}} \sum_{\alpha, \beta=0}^{N-1} f_{\alpha, \beta} \cdot e^{-2 \pi j \frac{p \alpha+q \beta}{N}} \text {, we have } \mathcal{S}(\hat{f})=\left(\begin{array}{c}
\hat{f}_{0,0} \\
\hat{f}_{1,0} \\
\vdots \\
\hat{f}_{N-1,0} \\
\vdots \\
\hat{f}_{0, N-1} \\
\hat{f}_{1, N-1} \\
\vdots \\
\hat{f}_{N-1, N-1}
\end{array}\right) \in M_{N^{2} \times 1}(\mathbb{C})
\end{aligned}
$$ and $(N \cdot(\mathcal{S}(f)))_{l}=N \hat{f}\left(\bmod _{N}(l),\left\lfloor\frac{l}{N}\right\rfloor\right)=N \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} \frac{1}{N^{2}} e^{-2 \pi j \frac{\left\lfloor\frac{l}{N}\right\rfloor \cdot q+\bmod _{N}(l) \cdot p}{N}} f_{p, q}$ Therefore, $W^{-1} \mathcal{S}(f)=N \mathcal{S}(\hat{f})$ for any $f \in M_{N \times N}(\mathbb{C})$, where $\hat{f}=D F T(f)$.

Method 2 (directly compute when $N=4$):
(a) We can directly calculate that

$$
W_{4}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right)
$$

and

$$
\overline{W_{4}}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right)
$$

It can be checked that $W_{4} \overline{W_{4}}=I_{4}$, which means $\overline{W_{4}}=W_{4}^{-1}$. Therefore

$$
W^{-1}=W_{4}^{-1} \otimes W_{4}^{-1}=\overline{W_{4}} \otimes \overline{W_{4}} .
$$

(b) By the matrix form of DFT, we have that

$$
\hat{f}=D F T(f)=\frac{1}{16}\left(2 \overline{W_{4}}\right) f\left(2 \overline{W_{4}}\right)=\frac{1}{4} \overline{W_{4}} f \overline{W_{4}}
$$

So it can be treated as a spearable linear transformation with transformation matrix

$$
{\overline{W_{4}}}^{T} \otimes\left(\frac{1}{4} \overline{W_{4}}\right)=\frac{1}{4} W^{-1} .
$$

Then

$$
W^{-1} \mathcal{S}(f)=4\left(\frac{1}{4} W^{-1} \mathcal{S}(f)\right)=4 \mathcal{S}(\hat{f})
$$

6. Let $f=\left(f_{i j}\right)_{0 \leq i, j \leq N-1} \in M_{N \times N}(\mathbb{R})$ be a clean image. Suppose f is blurred to g under a motion which is given by:

$$
g(x, y)=\sum_{t=0}^{3} f(x+t, y)
$$

Show that $\operatorname{DFT}(g)(u, v)=H(u, v) D F T(f)(u, v)$ and find $H(u, v)$.

Solution:

$$
\begin{aligned}
& \operatorname{DFT}(g)(u, v)=\frac{1}{N^{2}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} g(x, y) e^{-2 \pi j \frac{u x+v y}{N}} \\
& =\frac{1}{N^{2}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \sum_{t=0}^{3} f(x+t, y) e^{-2 \pi j \frac{u x+v y}{N}} \\
& =\frac{1}{N^{2}} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} \sum_{t=0}^{3} f(x+t, y) e^{-2 \pi j \frac{u(x+t)+v y}{N}} e^{-2 \pi j \frac{-u t}{N}} \\
& =\frac{1}{N^{2}} \sum_{t=0}^{3} \sum_{x^{\prime}=t}^{N-1+t} \sum_{y=0}^{N-1} f\left(x^{\prime}, y\right) e^{-2 \pi j \frac{u x^{\prime}+v y}{N}} e^{-2 \pi j \frac{-u t}{N}} \\
& =\left(\sum_{t=0}^{3} e^{2 \pi j \frac{u t}{N}}\right)\left[\frac{1}{N^{2}} \sum_{x^{\prime}=0}^{N-1} \sum_{y=0}^{N-1} f\left(x^{\prime}, y\right) e^{-2 \pi j \frac{u x^{\prime}+v y}{N}}\right] \\
& = \begin{cases}\frac{1-e^{8 \pi j \frac{u}{N}}}{1-e^{2 \pi j \frac{u}{N}}} D F T(f)(u, v) & \text { if } u \neq 0, \\
4 D F T(f)(u, v) & \text { otherwise, }\end{cases}
\end{aligned}
$$

Hence $H(u, v)= \begin{cases}\frac{1-e^{8 \pi j \frac{u}{N}}}{1-e^{2 \pi j \frac{u}{N}}} & \text { if } u \neq 0, \\ 4 & \text { otherwise, }\end{cases}$
7. Given $N^{2} \times N^{2}$ block-circulant real matrices D and $L, N \times N$ image g and fixed parameter $\varepsilon>0$, the constrained least square filtering aims to find $f \in M_{N \times N}$ that minimizes:

$$
E(f)=[L \mathcal{S}(f)]^{T}[L \mathcal{S}(f)]
$$

subject to the constraint:

$$
[\mathcal{S}(g)-D \mathcal{S}(f)]^{T}[\mathcal{S}(g)-D \mathcal{S}(f)]=\varepsilon
$$

where \mathcal{S} is the stacking operator. Let $W=W_{N} \otimes W_{N}$, where $W_{N}(n, k)=\frac{1}{\sqrt{N}} e^{2 \pi j \frac{n k}{N}}$, we have D and L is diagonalizable by W, i.e. $\Lambda_{D}=W^{-1} D W$ and $\Lambda_{L}=W^{-1} L W$ is diagonal. Given that the optimal solution f that solves the constrained least square problem satisfies

$$
\left[\lambda D^{T} D+L^{T} L\right] \mathcal{S}(f)=\lambda D^{T} \mathcal{S}(g)
$$

for some parameter λ. Find $\operatorname{DFT}(f)$ in terms of $\operatorname{DFT}(g), \operatorname{DFT}(h), \operatorname{DFT}(p)$ and λ, where $L \mathcal{S}(f)=\mathcal{S}(p * f)$ and $D \mathcal{S}(f)=\mathcal{S}(h * f)$ for any $f \in M_{N \times N}(\mathbb{R})$.

Solution:

Let $\vec{f}=\mathcal{S}(f)$ and $\vec{g}=\mathcal{S}(g)$. It's easy to know $D=W \Lambda_{D} W^{-1}$ and $L=W \Lambda_{L} W^{-1}$. Hence

$$
\begin{aligned}
\left(\lambda D^{T} D+L^{T} L\right) \vec{f} & =\left(\lambda D^{*} D+L^{*} L\right) \vec{f} \\
& =\left\{\lambda\left[W \Lambda_{D} W^{-1}\right]^{*} W \Lambda_{D} W^{-1}+\left[W \Lambda_{L} W^{-1}\right]^{*} W \Lambda_{L} W^{-1}\right\} \vec{f} \\
& =\left[\lambda W \Lambda_{D}^{*} \Lambda_{D} W^{-1}+W \Lambda_{L}^{*} \Lambda_{L} W^{-1}\right] \vec{f} \\
& =W\left(\lambda \Lambda_{D}^{*} \Lambda_{D}+\Lambda_{L}^{*} \Lambda_{L}\right) W^{-1} \vec{f} \\
& =W\left(\lambda \Lambda_{D}^{*} \Lambda_{D}+\Lambda_{L}^{*} \Lambda_{L}\right) W^{-1} N \mathcal{S}(D F T(f))
\end{aligned}
$$

on the other hand,

$$
\begin{aligned}
\lambda D^{T} \vec{g} & =\lambda D^{*} \vec{g} \\
& =\lambda W \Lambda_{D}^{*} W^{-1} \vec{g} \\
& =\lambda W \Lambda_{D}^{*} N \mathcal{S}(D F T(g))
\end{aligned}
$$

Hence $\left(\lambda \Lambda_{D}^{*} \Lambda_{D}+\Lambda_{L}^{*} \Lambda_{L}\right) \mathcal{S}(D F T(f))=\lambda \Lambda_{D}^{*} \mathcal{S}(\operatorname{DFT}(g))$.
From Theorem 1 in lecture 16, we know that for any $k, l, x, y \in\{0,1, \cdots, N-1\}$

$$
\begin{aligned}
& \Lambda_{D}(x+k N, y+l N)= \begin{cases}N^{2} \operatorname{DFT}(h)(x, k) & \text { if } k=l \text { and } x=y \\
0 & \text { otherwise }\end{cases} \\
& \Lambda_{L}(x+k N, y+l N)= \begin{cases}N^{2} D F T(p)(x, k) & \text { if } k=l \text { and } x=y \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

By comparing each pair of entries, we have

$$
\left(\lambda N^{4}|D F T(h)(u, v)|^{2}+N^{4}|D F T(p)(u, v)|^{2}\right) D F T(f)(u, v)=\lambda N^{2} D F T(h)(u, v) D F T(g)(u, v),
$$

which yields

$$
\operatorname{DFT}(f)(u, v)=\frac{\lambda D F T(h)(u, v) \operatorname{DFT}(g)(u, v)}{N^{2}\left(\lambda|\operatorname{DFT}(h)(u, v)|^{2}+|\operatorname{DFT}(p)(u, v)|^{2}\right)}
$$

8. Given $g \in M_{N \times N}(\mathbb{R})$, block circulant $D, L_{1}, L_{2} \in M_{N^{2} \times N^{2}}(\mathbb{R})$ and $\varepsilon>0$, we aim to minimize $\left\|L_{1} \vec{f}\right\|_{2}^{2}+\left\|L_{2} \vec{f}\right\|_{2}^{2}$ subject to $\|\vec{g}-D \vec{f}\|_{2}^{2}=\varepsilon$ over $f \in M_{N \times N}(\mathbb{R})$, where $\vec{f}=\mathcal{S}(f)$ and $\vec{g}=\mathcal{S}(g)$ vectorized by the stack operator \mathcal{S}.
Given Lagrange multiplier λ for the equality constraint, show that if f is a minimizer of the above constrained minimization problem, then

$$
\left(\lambda D^{T} D+L_{1}^{T} L_{1}+L_{2}^{T} L_{2}\right) \vec{f}=\lambda D^{T} \vec{g}
$$

Please prove your answer with details.

Solution:

Please check that $\frac{\partial \vec{f}^{T} \vec{a}}{\partial \vec{f}}=\vec{a}, \frac{\partial \vec{b}^{T} \vec{f}}{\partial \vec{f}}=\vec{b}$ and $\frac{\partial \vec{f}^{T} A \vec{f}}{\partial \vec{f}}=\left(A+A^{T}\right) \vec{f}$.
We know the minimizer must satisfy

$$
\mathcal{D}=\frac{\partial}{\partial \vec{f}}\left[\vec{f}^{T} L_{1}^{T} L_{1} \vec{f}+\vec{f}^{T} L_{2}^{T} L_{2} \vec{f}+\lambda(\vec{g}-D \vec{f})^{T}(\vec{g}-D \vec{f})\right]=0
$$

where λ is the Lagrange multiplier. Therefore,

$$
\begin{aligned}
& \mathcal{D}=0 \\
& \Rightarrow 2\left(L_{1}^{T} L_{1}+L_{2}^{T} L_{2}\right) \vec{f}+\lambda\left(-D^{T} \vec{g}-D^{T} \vec{g}+2 D^{T} D \vec{f}\right)=0 \\
& \Rightarrow\left(\lambda D^{T} D+L_{1}^{T} L_{1}+L_{2}^{T} L_{2}\right) \vec{f}=\lambda D^{T} \vec{g} .
\end{aligned}
$$

9. Given a 2D simple connected domain D and a noisy image $I: D \rightarrow \mathbb{R}$. Assume $I=0$ on the boundary of D. We consider the following image denoising model to restore the original clean image $f: D \rightarrow \mathbb{R}$ that minimizes:

$$
E(f)=\int_{D}(f(x, y)-I(x, y))^{2} d x d y+\int_{D} \sqrt{|\nabla f(x, y)|^{2}+\epsilon} d x d y
$$

where small parameter $\epsilon>0$.
(a) If f minimizes $E(f)$, show that f should satisfy the following conditions:

$$
2 f(x, y)-2 I(x, y)-\nabla \cdot\left(\frac{\nabla f(x, y)}{\sqrt{|\nabla f(x, y)|^{2}+\epsilon}}\right)=0 \text { for }(x, y) \in D
$$

(b) Derive an iterative scheme, which updates f_{n} to f_{n+1} with time step $\tau>0$, to minimize $E(f)$.

Solution:

(a) Suppose f minimizes $E(f)$, then for any $v: D \rightarrow \mathbb{R}$,

$$
\begin{aligned}
0 & =\left.\frac{d}{d t} E(f+t v)\right|_{t=0} \\
& =\left.\int_{D} \frac{d}{d t}\right|_{t=0}\left[(f+t v-I)^{2}+\sqrt{|\nabla(f+t v)|^{2}+\epsilon}\right] d x d y \\
& =\left.\int_{D}\left[2(f-I) v+2 t v^{2}+\frac{(\nabla f+t \nabla v) \cdot \nabla v}{\sqrt{|\nabla f+t \nabla v|^{2}+\epsilon}}\right]\right|_{t=0} d x d y \\
& =\int_{D}\left[2(f-I) v+\frac{\nabla f \cdot \nabla v}{\sqrt{|\nabla f|^{2}+\epsilon}}\right] d x d y \\
& =\int_{D}\left[2(f-I)-\nabla \cdot\left(\frac{\nabla f}{\sqrt{|\nabla f|^{2}+\epsilon}}\right)\right] v d x d y+\int_{\partial D}\left\langle\frac{\nabla f}{\sqrt{|\nabla f|^{2}+\epsilon}}, \vec{n}\right\rangle v d s
\end{aligned}
$$

We have $I=0$ on ∂D, so $\vec{n}=0$ holds on ∂D and the last term can be removed as

$$
0=\int_{D}\left[2(f-I)-\nabla \cdot\left(\frac{\nabla f}{\sqrt{|\nabla f|^{2}+\epsilon}}\right)\right] v d x d y
$$

Since the above equation holds for any v, it could be

$$
2 f(x, y)-2 I(x, y)-\nabla \cdot\left(\frac{\nabla f(x, y)}{\sqrt{|\nabla f(x, y)|^{2}+\epsilon}}\right)=0 \text { for }(x, y) \in D
$$

(b) Based on the derivation above, dropping the assumption that f is a minimizer of E, we have:

$$
\begin{aligned}
\frac{d}{d t} E(f+t v) & =\int_{D} \frac{d}{d t}\left[(f+t v-I)^{2}+\sqrt{|\nabla(f+t v)|^{2}+\epsilon}\right] d x d y \\
& =\int_{D} 2(f-I) v+2 t v^{2}+\frac{(\nabla f+t \nabla v) \cdot \nabla v}{\sqrt{|\nabla f+t \nabla v|^{2}+\epsilon}} d x d y \\
& \approx \int_{D} 2(f-I) v+\frac{\nabla f \cdot \nabla v}{\sqrt{|\nabla f|^{2}+\epsilon}} d x d y \quad \text { for small } t \\
& =\int_{D}\left[2(f-I)-\nabla \cdot\left(\frac{\nabla f}{\sqrt{|\nabla f|^{2}+\epsilon}}\right)\right] v d x d y
\end{aligned}
$$

For v to be a descent direction, we need $\frac{d}{d t} E(f+t v)<0$.
So choosing $v=-\left[2(f-I)-\nabla \cdot\left(\frac{\nabla f}{\sqrt{|\nabla f|^{2}+\epsilon}}\right)\right]$ on D, the integrals will be both less than 0 . Hence a descent direction is:

$$
-2 f(x, y)+2 I(x, y)+\nabla \cdot\left(\frac{\nabla f(x, y)}{\sqrt{|\nabla f(x, y)|^{2}+\epsilon}}\right) \text { for }(x, y) \in D
$$

and thus $E(f)$ can be iteratively minimized by updating f :

$$
f^{n+1}(x, y)=f^{n}(x, y)-\tau\left[2 f(x, y)-2 I(x, y)-\nabla \cdot\left(\frac{\nabla f(x, y)}{\sqrt{|\nabla f(x, y)|^{2}+\epsilon}}\right)\right] \text { if }(x, y) \in D
$$

for a small time step $\tau>0$.
10. Given a noisy image $I: D \rightarrow \mathbb{R}$, we consider the following image denoising model to restore the original clean image $f: D \rightarrow \mathbb{R}$ that minimizes:

$$
E(f)=\int_{D}(f(x, y)-I(x, y))^{2} d x d y+\int_{D}|\nabla f(x, y)|^{2} d x d y
$$

where $|\nabla f(x, y)|^{2}=\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}$. Assume $I=0$ on the boundary of D.
(a) Derive an iterative scheme, which updates f^{n} to f^{n+1} with time step $\tau>0$, to minimize $E(f)$. This is the same model as discussed in the lectures. Please show all your steps with details, including detailed explanations on why E is iteratively decreasing. Missing detailed steps will result in mark deductions.
(b) If E is modified to \widetilde{E} defined as follows:

$$
\widetilde{E}(f)=\int_{D} \sqrt{(f(x, y)-I(x, y))^{2}+\epsilon^{2}} d x d y+\int_{D} \sqrt{|\nabla f(x, y)|^{2}+\epsilon^{2}} d x d y
$$

where $\epsilon>0$ is a small parameter bigger than 0 . Derive an iterative scheme, which updates f^{n} to f^{n+1} with time step $\tau>0$, to minimize $\widetilde{E}(f)$. Please show all your steps with details, including detailed explanations on why \widetilde{E} is iteratively decreasing. Missing detailed steps will result in mark deductions.

Solution:

(a) Suppose f minimizes $E(f)$, then for any $v: D \rightarrow \mathbb{R}$,

$$
\begin{aligned}
0 & =\left.\frac{d}{d t} E(f+t v)\right|_{t=0} \\
& =\left.\int_{D} \frac{d}{d t}\right|_{t=0}\left[(f+t v-I)^{2}+\langle\nabla(f+t v), \nabla(f+t v)\rangle\right] d x d y \\
& =\left.\int_{D} 2\left[(f-I) v+t v^{2}+\langle\nabla f, \nabla v\rangle+t\langle\nabla v, \nabla v\rangle\right]\right|_{t=0} d x d y \\
& =\int_{D} 2[(f-I) v+\nabla f \cdot \nabla v] d x d y \\
& =\int_{D} 2[(f-I)-\nabla \cdot \nabla f] v d x d y+\int_{\partial D} 2\langle\nabla f, \vec{n}\rangle v d s
\end{aligned}
$$

We have $I=0$ on ∂D, so $\vec{n}=0$ there, the equation becomes

$$
\int_{D} 2[(f-I)-\Delta f] v d x d y=0
$$

Since the above equation holds for any v, it must be

$$
f(x, y)-I(x, y)-\Delta f(x, y)=0 \text { for }(x, y) \in D
$$

Refer to the argument in 9(b), a descent direction is:

$$
-2 f(x, y)+2 I(x, y)+2 \Delta f(x, y) \text { for }(x, y) \in D
$$

and thus $E(f)$ can be iteratively minimized by updating f :

$$
f^{n+1}(x, y)=f^{n}(x, y)-2 \tau[f(x, y)-I(x, y)-\Delta f(x, y)] \text { if }(x, y) \in D
$$

for a small time step $\tau>0$.
(b) Suppose f minimizes $\tilde{E}(f)$, then for any $v: D \rightarrow \mathbb{R}$,

$$
\begin{aligned}
0 & =\left.\frac{d}{d t} \tilde{E}(f+t v)\right|_{t=0} \\
& =\left.\int_{D} \frac{d}{d t}\right|_{t=0}\left[\sqrt{(f+t v-I)^{2}+\epsilon^{2}}+\sqrt{|\nabla(f+t v)|^{2}+\epsilon^{2}}\right] d x d y \\
& =\left.\int_{D}\left[\frac{(f-I) v+t v^{2}}{\sqrt{(f+t v-I)^{2}+\epsilon^{2}}}+\frac{(\nabla f+t \nabla v) \cdot \nabla v}{\sqrt{|\nabla f+t \nabla v|^{2}+\epsilon^{2}}}\right]\right|_{t=0} d x d y \\
& =\int_{D}\left[\frac{(f-I) v}{\sqrt{(f-I)^{2}+\epsilon^{2}}}+\frac{\nabla f \cdot \nabla v}{\sqrt{|\nabla f|^{2}+\epsilon}}\right] d x d y \\
& =\int_{D}\left[\frac{f-I}{\sqrt{(f-I)^{2}+\epsilon^{2}}}-\nabla \cdot\left(\frac{\nabla f}{\sqrt{|\nabla f|^{2}+\epsilon}}\right)\right] v d x d y
\end{aligned}
$$

Since the above equation holds for any v, it must be

$$
\frac{f-I}{\sqrt{(f-I)^{2}+\epsilon^{2}}}-\nabla \cdot\left(\frac{\nabla f}{\sqrt{|\nabla f|^{2}+\epsilon}}\right)=0
$$

Refer to the argument in 9(b), a descent direction is:

$$
-\frac{f-I}{\sqrt{(f-I)^{2}+\epsilon^{2}}}+\nabla \cdot\left(\frac{\nabla f}{\sqrt{|\nabla f|^{2}-\epsilon}}\right) \text { for }(x, y) \in D
$$

and thus $E(f)$ can be iteratively minimized by updating f :

$$
f^{n+1}(x, y)=f^{n}(x, y)-\tau\left[\frac{f-I}{\sqrt{(f-I)^{2}+\epsilon^{2}}}-\nabla \cdot\left(\frac{\nabla f}{\sqrt{|\nabla f|^{2}+\epsilon}}\right)\right] \text { if }(x, y) \in D
$$

for a small time step $\tau>0$.

