## MMAT 5390: Mathematical Image Processing Midterm practice

Please give reasons in your solutions.

1. Recall that an image transformation $\mathcal{O}: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R})$ is said to be separable if there exist matrices $A \in M_{n \times n}(\mathbb{R})$ and $B \in M_{n \times m}(\mathbb{R})$ such that $\mathcal{O}(f)=A f B$ for any $f \in M_{n \times n}(\mathbb{R})$.
Here $\mathcal{O}: M_{3 \times 3}(\mathbb{R}) \rightarrow M_{3 \times 3}(\mathbb{R})$ is an image transformation and the transformation matrix of its PSF is

$$
H=\left(\begin{array}{ccccccccc}
2 & 4 & 6 & 2 & 4 & 6 & 0 & 0 & 0 \\
8 & 10 & 0 & 8 & 10 & 0 & 0 & 0 & 0 \\
12 & 0 & 0 & 12 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 3 & 0 & 0 & 0 & 3 & 6 & 9 \\
4 & 5 & 0 & 0 & 0 & 0 & 12 & 15 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 18 & 0 & 0 \\
0 & 0 & 0 & 4 & 8 & 12 & 1 & 2 & 3 \\
0 & 0 & 0 & 16 & 20 & 0 & 4 & 5 & 0 \\
0 & 0 & 0 & 24 & 0 & 0 & 6 & 0 & 0
\end{array}\right) .
$$

Please determine if $\mathcal{O}$ is separable. If yes, please find the corresponding matrices $A \in$ $M_{3 \times 3}(\mathbb{R})$ and $B \in M_{3 \times 3}(\mathbb{R})$.
2. A matrix $H \in M_{n^{2} \times n^{2}}(\mathbb{R})$ is called block-circulant if it has the form

$$
H=\left(\begin{array}{cccc}
H_{1} & H_{n} & \cdots & H_{2} \\
H_{2} & H_{1} & \cdots & H_{3} \\
\vdots & \vdots & \ddots & \vdots \\
H_{n} & H_{n-1} & \cdots & H_{1}
\end{array}\right)
$$

where $H_{i} \in M_{n \times n}(\mathbb{R})$ for $i=1, \cdots, n$. Given matrix $k, f \in M_{2 \times 2}(\mathbb{R})$, let the image transformation $\mathcal{O}(f)=k * f$, please prove that the transformation matrix $H$ of $\mathcal{O}$ is block-circulant.
3. Let $H=\left(\begin{array}{cccc}r & 2 r & u & 2 u \\ 3 r & r & 3 v & v \\ 3 & 6 & s & 2 s \\ 9 & 3 & 3 s & s\end{array}\right)$ be the transformation matrix corresponding to an image transformation $\mathcal{O}: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$, where $r, s, u, v$ are all non-zero real numbers. Prove that $\mathcal{O}$ is separable and if and only if $u=v$. Please explain your answer with details.
4. Let $H=\left(\begin{array}{llll}2 & 4 & a & 6 \\ 4 & 2 & 6 & 1 \\ 1 & 6 & 2 & 4 \\ c & 1 & 4 & b\end{array}\right)$ be the transformation matrix corresponding to an image transformation $\mathcal{O}: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$, where $a, b, c$ are all non-zero real numbers. Please determine $a, b, c$ such that $\mathcal{O}$ is an image transformation defined by convolution.
5. Let $f=\left(\begin{array}{llll}1 & 0 & 3 & 0 \\ 0 & 4 & 0 & 2\end{array}\right)$.
(a) Compute an SVD of $f$.
(b) Express $f$ as a linear combination of its elementary images.
6. Let $f=\left(\begin{array}{llll}5 & 4 & 6 & 6 \\ 6 & 1 & 6 & 3 \\ 1 & 2 & 1 & 5 \\ 6 & 4 & 6 & 1\end{array}\right)$.
(a) Compute the Haar transform $f_{\text {Haar of }} f$.
(b) Suppose there is only enough capacity to store 10 pixel values of $f_{\text {Haar }}$. Choose 10 entries to keep such that the reconstucted image differs as little as possible in Frobenius norm with the original image, and compute the reconstructed image.
7. Let $H_{n}(t)$ be the $n^{\text {th }}$ Haar function, where $n \in \mathbb{N} \cup\{0\}$.
(a) Write down the definition of $H_{n}(t)$.
(b) Write down the Haar transform matrix $\tilde{H}$ for $4 \times 4$ images.
(c) Suppose $A=\left(\begin{array}{llll}0 & 1 & 1 & 2 \\ 2 & 3 & 3 & 4 \\ 2 & 3 & 3 & 4 \\ 4 & 5 & 5 & 6\end{array}\right)$. Compute the Haar transform $A_{\text {Haar }}$ of $A$, and compute the reconstructed image $\tilde{A}$ after setting the largest entry of $A_{\text {Haar }}$ to 0 .
8. Suppose the definition of the DFT on $N \times N$ images is changed to

$$
\hat{f}(m, n)=D F T(f)(m, n)=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k, l) e^{2 \pi j \frac{m k+n l}{N}} .
$$

(a) Does there exist a matrix $U$ such that $\hat{f}=U f U$ for an $N \times N$ image $f$ ? If yes, derive $U$ and check if it is unitary.
(b) Show that the inverse DFT (iDFT) is defined by

$$
f(p, q)=i D F T(\hat{f})(p, q)=\frac{1}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} \hat{f}(m, n) e^{-2 \pi j \frac{p m+q n}{N}} .
$$

9. Let $f=\left(\begin{array}{cccc}3 & 2 & 4 & 4 \\ 4 & -3 & 4 & 0 \\ -2 & -1 & -2 & 3 \\ 4 & 1 & 4 & -2\end{array}\right)$.
(a) Compute the discrete Fourier transform $\hat{f}$ of $f$.
(b) Compute the image reconstructed from $\hat{f}$ after removing frequencies in 3rd row and 3rd column.
10. Let $f, g \in M_{M \times N}(\mathbb{R})$ be periodically extended, please prove $\widehat{f * g}=M N \hat{f} \odot \hat{g}$, where $\hat{f} \odot$ $\hat{g}(m, n)=\hat{f}(m, n) \hat{g}(m, n)$.
11. Let $f, g \in M_{M \times N}(\mathbb{R})$ be periodically extended, please prove $\widehat{f \odot g}=\hat{f} * \hat{g}$, where $f \odot g(k, l)=$ $f(k, l) g(k, l)$.
12. Let $f \in M_{N \times N}(\mathbb{R})$ be periodically extended, and let $\tilde{f}(k, l)=f(l,-k)$, please prove $\hat{\tilde{f}}=\tilde{\hat{f}}$.
13. Let $f \in M_{M \times N}(\mathbb{R})$ be periodically extended, and let $\tilde{f}(k, l)=f\left(k-k_{0}, l-l_{0}\right)$ for some $k_{0}, l_{0} \in \mathbb{Z}$, please prove $\hat{\tilde{f}}=e^{-2 \pi j\left(\frac{k_{0} m}{M}+\frac{l_{0} n}{N}\right)} \hat{f}$.
14. Let $f \in M_{M \times N}(\mathbb{R})$ be periodically extended, and let $\tilde{\hat{f}}(m, n)=\hat{f}\left(m-m_{0}, n-n_{0}\right)$ for some $m_{0}, n_{0} \in \mathbb{Z}$, please prove $\tilde{\hat{f}}=\operatorname{DFT}\left(e^{2 \pi j\left(\frac{k m_{0}}{M}+\frac{l n_{0}}{N}\right)} f\right)$.
15. Please prove that the rank $k$ approximation is the optimal approximation for rank $k$ matrix in sense of Frobenius norm. That is, given a rank $r$ matrix $A \in M_{n \times m}(\mathbb{R})$, for any rank $k$ matrix $B \in M_{n \times m}(\mathbb{R})$, we have

$$
\|A-B\|_{F} \geq\left\|A-A_{k}\right\|_{F}
$$

where $A_{k}=\sum_{i=1}^{k} \sigma_{i}{\overrightarrow{u_{i}}}_{v_{i}}^{T}$ is the rank $k$ approximation of $A=\sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{T}$ and $k=$ $1,2, \cdots, r$.

