Lecture 8:
Image enhancement in the frequency domain:
Goal: 1. Remove $\underbrace{\text { higequency components (low-pass filter) for image denoising. }}_{\text {high e }}$
2. Remove low -frequency components (hig h-pass filter) for the extraction of image details. non-edge
Let \hat{F} be the DFT of an $N \times N$ image F. (indices taken from 0 to $N-1$)
Then: for all $0 \leq m, n \leq N-1$,

$$
F(m, n)=\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \hat{F}(k, l) e^{j \frac{2 \pi}{N}(k m+l n)}
$$

$\therefore \hat{F}(k, l)$ is associated to the complex function $g(m, n)=e^{j \frac{2 \pi}{N}(k m+l n)}$
Goal: Remove "jumpy" components by setting suitable $\hat{F}(k, l)$ to zero.

$$
\begin{aligned}
& +c \int A N A N A
\end{aligned}
$$

To remove noise, truncate c (let $c=0$)

Observation:
If the image I takes indices between 0 to $\mathrm{N}-1$, then the DFT of I takes indices between 0 to $\mathrm{N}-1$.

We have:

Properties of Fourier coefficients \hat{F}
Let F be a $N \times N$ image, $N=$ even. Let $\hat{F}=D F T$ of F.

$$
\therefore \hat{F}(k, l)=\frac{1}{N^{2}} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} F(m, n) e^{-j 2 \pi \cdot\left(\frac{m k+n l)}{N}\right)}
$$

Fourier coefficients of F at (k, l)
Observe that: for $0 \leq k, l \leq \frac{N}{2}-1$

$$
\begin{aligned}
\hat{F}\left(\frac{N}{2}+k, \frac{N}{2}+l\right) & =\frac{1}{N^{2}} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} F(m, n) e^{-j \frac{2 \pi}{N}\left(m\left(\frac{N}{2}+k\right)+n\left(\frac{N}{2}+l\right)\right)} \\
& =\frac{1}{N^{2}} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} F(m, n)(-1)^{m+n} e^{-j \frac{2 \pi}{N}(m(-k)+n(-l))} \\
& =\frac{1}{N^{2}} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} F(m, n) e^{-j \frac{2 \pi}{N}\left(m\left(\frac{N}{2}-k\right)+n\left(\frac{N}{2}-l\right)\right)} \\
& =\hat{F}\left(\frac{N}{2}-k, \frac{N}{2}-l\right)
\end{aligned}
$$

\therefore Computing part of \hat{F} can determine the rest!!

Centralisation:
Let F be an image whose indices are taken between $-\frac{N}{2}$ to $\frac{N}{2}$ Then, $\operatorname{DF} T(F)$ is a matrix whose indices are also taken between $-\frac{N}{2}$ to $\frac{N}{2}$.

We have:

Procedures for image processing by modifying Fourier coefficients
Given an image $I=\left(I_{i j}\right)_{-\frac{N}{2} \leqslant i, j} \leqslant \frac{N}{2}$.
Compute DFT of I (Denote $\hat{I}=D F T(I)$)
Then: obtain a new DFT matrix, $\hat{I}^{n e w}$, by:

$$
\hat{I}^{\text {new }}=H \odot \hat{I} \quad(\text { Here } \quad H \odot \hat{I}(u, v)=H(u, v) \hat{I}(u, v))
$$

H is a suitable filter. pixel-wismultiplication

Finally, obtain an improved image by inverse DFT:

$$
I^{\text {new }}=\underbrace{i D F T}_{\text {inverse } D F T}\left(\hat{I}^{\text {new }}\right)
$$

Note: Let $h={\underset{i n v e r s e ~}{\operatorname{DFT}}}_{\operatorname{iDFT}(H) \Leftrightarrow H=\operatorname{DFT}(h)}^{\operatorname{Di}}$

$$
\begin{aligned}
& I^{\text {new }}(x, y)=C h * I(x, y)=\sum_{u} \sum_{v} h(x-u, y-v) I(u, v)
\end{aligned}
$$

$$
\begin{aligned}
& \text { anew } \\
& \text { normalizing } \\
& \text { constant }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let } H=\operatorname{DFT}(h) \\
& \hat{I}^{\text {new }}=H \odot \hat{I} \\
& \text { Then: }^{\text {new }}=\operatorname{DDT}\left(\hat{I}^{\text {new }}\right) \\
& I^{\text {new }} \\
& I^{\text {new }}=C h * I
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{DFT}(h * I)=\frac{k \underbrace{\|}_{\hat{I}^{\text {new }}} \underbrace{\operatorname{DFT}(h)}_{\hat{I}} \underset{\hat{D}}{\operatorname{ODFTI}})}{\operatorname{Din}} \\
& \operatorname{DFT}(h * I)=k \hat{I}^{\text {new }} \\
& h * I=\operatorname{iDFT}\left(k \hat{I}^{\text {new }}\right) \\
& h * I=K i \operatorname{DFT}\left(\hat{I}^{\text {new }}\right) \\
& \Rightarrow \operatorname{iDFT}\left(\hat{I}^{\text {new }}\right)=\frac{1}{k} h * I \\
& I^{\text {new }}=\int_{K_{C}}^{h} h^{h * I}
\end{aligned}
$$

Example of Low-pass filters for image denoising
Assume that we work on the centered spectrum!
That is, consider $\hat{F}(u, v)$ where $-N / 2 \leq u \leq N / 2-1,-N / 2 \leq v \leq N / 2-1$. 1 Ideal low pass filter (ILPF):

$$
H(u, v)=\left\{\begin{array}{lll}
1 & \text { if } & D(u, v):=u^{2}+v^{2} \leq D_{0}^{2} \\
0 & \text { if } & D(u, v)>D_{0}^{2}
\end{array}\right.
$$

In 1-dim cross-section, $\operatorname{iDF} T(H(u, v))$ looks like:

$$
\begin{aligned}
& { }^{\prime} C h \times I(x, y) \\
& =C \sum_{u, v} h(x-u, y-v) I(u, v)
\end{aligned}
$$

every pixel values of I has an effect on $h \times I(x, y)!!$

Good: Simple
Bad: Produce ringing effect!
2. Butterworth low-pass fitter (BLPF) of order $n(n \geqslant 1$ integer):

$$
H(u, v)=\frac{1}{1+\left(D(u, v) / D_{0}\right)^{n}}
$$

$H(u, v)$ in 1-dim
$F^{-1}(H(u, v))$ in $1-\operatorname{dim}$

Good: Produce less / no visible ringing effect if n is carefully chosen!!
3. Gaussian low -pass filter

$$
H(u, v)=\exp \left(-\frac{D\left(u^{\prime \prime}, v\right)}{2 \sigma^{2}}\right)
$$

$\sigma=$ spread of the Gaussian function

F.T. of Gaussian is also Gaussian!!

Good: No visible ringing effect!!

Examples for high-pass filtering for feature extraction

1. Ideal high-pass filter: (IHPF)

$$
H(u, v)= \begin{cases}0 & \text { if } D(u, v) \leqslant D_{0}^{2} \\ 1 & \text { if } D(u, v)>D_{0}^{2}\end{cases}
$$

Bad: Produce ringing
2. Butterwort high-pass filter:

$$
\begin{aligned}
& \text { high-pass tilter: } \\
& H(u, v)=\frac{1}{1+\left(\frac{D_{0}}{D(u, v)}\right)^{n}} \quad(H(u, v)=0 \text { if } \quad D(u, v)=0) \\
& \text { Choose the right } n
\end{aligned}
$$

Good: Less ringing
3. Gaussian high-pass filter

$$
H(u, v)=1-e^{-\left(\frac{D(u, v)}{2 \sigma^{2}}\right)}
$$

Good: No visible ringing!

Image deblurring

Atmospheric turbulence

Motion Blur

Speeding problem

Image deblurring in the frequency domain:
Mathematical formulation of image blurring
Let g be the observed (blurry) image.
Let f be the original (good) image.
 $\binom{$ not a matrix }{ just a transformation }

Model g as: $g=D(f)+n$
blurry image of f
where D is the degradation function/operator and n is the additive noise.
Assumption on D :

1. D is position invariant:

Let $g(x, y)=D(f)(x, y)$ and let $\tilde{f}(x, y):=f(x-\alpha, y-\beta)$.
Then: $D(\tilde{f})(x, y)=g(x-\alpha, y-\beta)=D(f)(x-\alpha, y-\beta)$
2. Linear: $D\left(f_{1}+f_{2}\right)=D\left(f_{1}\right)+D\left(f_{2}\right)$
$D(\alpha f)=\alpha D(f)$ where α is a scalar multiplication.

With the above assumption, consider an impluse image $\delta \in M_{(N+1) \times(N+1)}$ (indices taken between

$$
\delta(x, y)=\left\{\begin{array}{lll}
1 & \text { if }(x, y)=(0,0) \tag{N}\\
0 & \text { if } & (x, y) \neq(0,0)
\end{array}\right.
$$

Let $\tilde{\delta}_{\alpha, \beta}$ be the translated image of δ by (α, β) :

$$
\tilde{S}_{\alpha, \beta}(x, y)=\delta(x-\alpha, y-\beta) \quad \text { for } \quad-\frac{N}{2} \leq x, y \leq \frac{N}{2}
$$

Note: $f(x, y)=f * \delta(x, y)=\sum_{\alpha=-\frac{N}{2}}^{N / 2-1} \sum_{\beta=-1 / 2}^{N / 2} f(\alpha, \beta) \delta(x-\alpha, y-\beta)=\sum_{\alpha=-\frac{N}{2}}^{\frac{N}{2}} \sum_{\beta=-\frac{N}{2}}^{\frac{N}{2}} f(\alpha, \beta) \tilde{\delta}_{\alpha, \beta}(x, y)$ for all $\frac{-N}{2} \leq x, y \leq \frac{N}{2}$.

$$
\therefore f=\sum_{\alpha=-\frac{N}{2}}^{\frac{N}{2}} \sum_{\beta=-\frac{N}{2}}^{\frac{N}{2}} f(\alpha, \beta) \underbrace{2}_{\mathbb{R}}{\underset{M}{(N+1) \times(N+1)}}_{\delta_{\alpha, \beta}}
$$

Let g be the blurry image of f. That is, $g=D(f)$

$$
\begin{aligned}
g=D(f) & =D\left(\sum_{\alpha=-\frac{N}{2}}^{N} \sum_{\beta=-\frac{N}{2}}^{N} f(\alpha, \beta) \tilde{\delta}_{\alpha, \beta}\right) \\
& =\sum_{\alpha=-\frac{N}{2}}^{\frac{N}{2}} \sum_{\beta=-\frac{N}{2}}^{N} f(\alpha, \beta) D\left(\tilde{\delta}_{\alpha, \beta}\right) \quad\binom{\text { (inearity of }}{D} \\
\therefore g(x, y) & =\sum_{\alpha=-\frac{N}{2}}^{\sum^{N}} \sum_{\beta=-\frac{N}{2}}^{N} f(\alpha, \beta) D\left(\tilde{\delta}_{\alpha, \beta}^{2}\right)(x, y) \\
& =\sum_{\alpha=-\frac{N}{2}}^{N} \sum_{\beta=-\frac{N}{2}}^{N} f(\alpha, \beta) D(\delta)(x-\alpha, y-\beta) \quad \begin{array}{c}
\text { (position- } \\
\text { invariant) }
\end{array} \\
& =f \times h(x, y) \text { where } \quad h=D(\delta) \\
\therefore g & =f \times h
\end{aligned}
$$

\therefore With the above assumption,
Degradation/Blur = Convolution

