Lecture 8:

Image enhancement in the frequency domain:

Goal: 1. Remove high-frequency components (low-pass filler) for image denoising.
2. Remove low-frequency components (high-pass filler) for the extraction
of image details. non-edge
Let
$$\hat{F}$$
 be the DFT of an NXN image F. (indices taken
from 0 to N-1)
Then: for all $0 \le m, n \le N-1$,
 $j \ge \frac{2\pi}{N} (km + ln)$
 $F(m, n) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \hat{F}(k, l) C$
 $k=0 l=0$
 $\hat{F}(k, l)$ is associated to the complex function $g(m,n) = C$
Goal: Remove "jumpy" components by setting Suitable $\hat{F}(k, l)$ to zero.

2

1

= a /// + b //// Mm + c \\\\\\\ lo removo noise, truncate c (let c=0)

Observation:

If the image I takes indices between 0 to N-1, then the DFT of I takes indices between o to N-1.

and com as

We have:

one

2

12

Charter. See.

Properties of Fourier coefficients F

Let F be a NXN image, N = even. Let
$$\hat{F} = DFT$$
 of F.
 $\hat{F}(R, L) = \frac{1}{N^2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} F(m, n) e^{-j2\pi(\frac{mR+nL}{N})}$
Fourier coefficients of F at (R, L)
Observe that : for $0 \le R, L \le \frac{N}{L} - 1$
 $\hat{F}(\frac{N}{L} + R, \frac{N}{L} + R) = \frac{1}{N^2} \sum_{m=0}^{N-1} F(m, n) e^{-j2\pi(m(\frac{N}{L} + R) + n(\frac{N}{L} + L))}$
 $= \frac{1}{N^2} \sum_{m=0}^{N-1} \sum_{m=0}^{N-1} F(m, n) e^{-j2\pi(m(\frac{N}{L} - R) + n(\frac{N}{L} - L))}$
 $= \hat{F}(\frac{N}{L} - R, \frac{N}{L} - L)$
 $\hat{F}(\frac{M}{L} - R, \frac{N}{L} - L)$
 $\hat{F}(\frac{M}{L} - R, \frac{N}{L} - L)$

al generation

anter 1

-

2

a

-

Centralisation:

Let F be an image whose indices are taken between -½ to ½ Then, DFT(F) is a matrix whose indices are also taken between -½ to ½.

Proceedures for image processing by modifying Fourier coefficients
Given an image
$$I = (I_{ij}) - \frac{1}{2} \leq i, j \leq \frac{1}{2}$$
.
Compute DFT of I (Denote $\hat{I} = DFT(I)$)
Then: Obtain a new DFT matrix, \hat{I}^{new} , by:
 $\hat{I}^{new} = H \odot \hat{I}$ (Here $H \odot \hat{I}(u,v) = H(u,v) \hat{I}(u,v)$)
H is a suitable filter.
Finally, obtain an improved image by inverse DFT:
 $I^{new} = \hat{U} DFT(\hat{I}^{new})$
inverse DFT

Note: Let h = iDFT(H) () H= DFT(h) inverse DFT $T^{\text{new}}(x,y) = Ch \times I(x,y) = \sum_{u,v} Sh(x-u,y-v)I(u,v)$ DFT inverse * [() 4 new hormalizing constant

Let H=DFT(R). $\hat{T}^{\text{new}} = H \odot I$ Then: I new = iDFT(Inew) =(h × I

DFT(R * I) = K DFT(R) O DFT(I) \dagger fnew DFT (h * I) = K I^{new} R*I = iDFT(KInew) h*I = K i DFT(fnew) ⇒ iDFT(Înew) = k h×I Inew h*I K

Good: Simple Bad : Produce ringing effect!

2. Butterworth low-pass filter (BLPF) of order n (n = 1 integer):

$$H(u,v) = \frac{1}{1 + (D(u,v)/D_{o})^{n}}$$

3. Gaussian low-pass filter

$$u^{2}+v^{2}$$

$$H(u,v) = \exp\left(-\frac{D(u,v)}{2\sigma^{2}}\right)$$

$$d = spread of the Gaussian function$$

$$F. T. of Gaussian is also Gaussian!!$$

$$Good: No visible ringing effect!!$$

Examples for high-pass filtering for feature extraction

2

onto

Thank

1. Ideal high-pass filter: (IHPF) $H(u,v) = \begin{cases} 0 & \text{if } D(u,v) \le D_0^2 \\ 1 & \text{if } D(u,v) > D_0^2 \end{cases}$ Bad: Produce ringing

2. Butterworth high-pass filter:

$$H(u,v) = \frac{1}{1 + \left(\frac{D_{0}}{N(u,v)}\right)^{n}} \qquad \begin{pmatrix} H(u,v) = 0 & \text{if } D(u,v) = 0 \\ 1 + \left(\frac{D_{0}}{N(u,v)}\right)^{n} & \text{Choose the right n} \\ \\ G_{0} \cdot d \cdot \text{ Less ringing} \\ 3. Gaussian high-pass filter \\ H(u,v) = 1 - e^{-\left(\frac{D(u,v)}{2\sigma^{2}}\right)} \\ \\ G_{0} \cdot d \cdot \text{ No visible ringing}! \end{cases}$$

18.000

Image deblurring

1

Atmospheric turbulence

12

-

Motion Blur

2

Image deblurring in the frequency domain:
Mathematical formulation of image blurring
Let g be the observed (blurry) image.
Let f be the original (good) image.
Model g as =
$$g = D(f) + n$$

where D is the degradation function/operator and n is the additive noise.
Assumption on D:
1. D is position invariant:
Let $g(x,y) = D(f)(x,y)$ and let $\tilde{f}(x,y) = \tilde{f}(x-d, y-\beta)$.
Then: $D(\tilde{f})(x,y) = g(x-d, y-\beta) = D(f)(x-d, y-\beta)$
2. Linear: $D(f_1 + f_2) = D(f_1) + D(f_2)$
 $D(df) = dD(f)$ where d is a scalar multiplication.

-

With the above assumption, consider an impluse image
$$\delta \in M_{(N+1)\times(N+1)}$$
 (indices taken between
 $\delta(x,y) = \begin{cases} 1 & if (x,y) = (0,0) \\ 0 & if (x,y) \neq (0,0) \end{cases}$

Let $\delta_{d,\beta}$ be the translated image of δ by (d,β) :
 $\delta_{d,\beta}(x,y) = \delta(x-d, y-\beta)$ for $-\frac{N}{2} \leq x, y \leq \frac{N}{2}$
Note: $f(x,y) = f \star \delta(x,y) = \frac{N_{n-1}}{2} \frac{f(d,\beta)}{2} \delta(x-d,y-\beta) = \sum_{d=-\frac{N}{2}}^{\frac{N}{2}} \frac{f(d,\beta)}{2} \delta_{d,\beta}(x,y)$
for all $-\frac{N}{2} \leq x, y \leq \frac{N}{2}$.
 $f = \sum_{d=-\frac{N}{2}}^{\frac{N}{2}} \frac{f(d,\beta)}{2} \frac{\delta_{d,\beta}}{2} \frac{\delta_{d,\beta$

-

 $D(f) = D\left(\underbrace{\overset{\forall}{\geq}}_{\substack{\lambda=-\frac{N}{2}}} \underbrace{\overset{\forall}{\geq}}_{\substack{\beta=-\frac{N}{2}}} f(\lambda, \beta) \widetilde{S}_{\lambda, \beta} \right)$ g = $= \underbrace{\overset{N}{\geq}}_{X=-\overset{N}{\geq}} \underbrace{\overset{N}{\leq}}_{f(a,\beta)} D(\widetilde{S}_{a,\beta}) (\underbrace{\text{linearity of}}_{D})$ $\overset{\overset{N}{\geq}}_{X=-\overset{N}{\geq}} \underbrace{\overset{N}{\in}}_{f(a,\beta)} D(\widetilde{S}_{a,\beta}) (x, y)$ $\overset{\overset{N}{\leftarrow}}_{X=-\overset{N}{\geq}} \underbrace{\overset{N}{\in}}_{\beta=-\overset{N}{\geq}}$ 9(x,y) = $= \sum_{n=1}^{N} \sum_{j=1}^{N} f(\alpha, \beta) D(S)(x-\alpha, y-\beta)$ (positioninvariant) X=-N B=-N h = D(s)= f x h(x,y) where $g = f \times h$

. With the above assumption,

Degradation/Blur = Convolution

1 <211/8