Lecture 7:

Recall:

Discrete Fourier Transform: Definition:

The 2D DFT of a MXN image
$$g = (g(k, l))_{k,l}$$
, where $0 \le k \le M-1$,
 $0 \le l \le N-1$ is defined as:
 $\hat{g}(m, n) = \frac{1}{MN} \sum_{k=0}^{N-1} \frac{N}{2} (k, l) e^{-j2\pi (\frac{km}{M} + \frac{ln}{N})}$
(where $j = J-1$, $e^{j\theta} = \cos \theta + j \sin \theta$)

2

1

in Date

Remark: The inverse of DFT is given by: $g(p, q) = \sum_{m=0}^{M-1} \sum_{n=0}^{N+1} \hat{g}(m, n) \quad e^{j2\pi} \left(\frac{pm}{M} + \frac{qn}{N}\right)$ $\begin{pmatrix} no & -ve & sign \end{pmatrix}$ (no & -ve & sign)

Why is DFT useful in imaging:
1. DFT of convolution:
Recall:
$$g * W(n,m) = \sum_{\substack{n'=0 \ m'=0}}^{N-1} g(n-n',m-m') W(n',m')$$

($g,m \in M_{N\times M}(\mathbb{R})$)
Then, DFT($g * W$)(p, g) = MN DFT(g)(p, g) · DFT(W)(p, g)
for all $D \leq p \leq N-1$, $0 \leq g \leq M-1$
In matrix form, we can write DFT($g * W$) = DFT(g) \bigcirc DFT(W)
entrywise multiplication

i DFT of convolution can be reduced to simple multiplication!

CONTRACTOR AND

Note. (Spatial domain) Linear fillering: J×g (inear combination of heighborhood pixel DET values) Modifying the MNÍ O 9 (frequency domain) Fourier coefficients pixel-wise by multiplication) multiplication

2. Average value of image
Average value of
$$g = \overline{g} = \int_{N^2} \sum_{k=0}^{N-1} \sum_{k=0}^{N-1} g(k, \lambda) = \int_{N^2} \sum_{k=0}^{N-1} \sum_{k=0}^{N-1} g(k, \lambda) e^{-j2\pi(0)}$$

3. DFT of a rotated image
(onsider a N×N image g.
Then: $\widehat{g}(m, m) = \int_{N^2} \sum_{k=0}^{N-1} \sum_{k=0}^{N-1} g(k, \lambda) e^{-j2\pi(\frac{k}{N}m + \lambda n)}$
Write k and L in polar coordinates:
 $k \equiv r\cos\theta$; $\lambda = r\sin\theta$
Similarly, write $m \equiv w\cos\phi$; $n = w\sin\phi$.
Note that: $km + \ln = rw(\cos\theta\cos\phi + \sin\theta\sin\phi) = rw\cos(\theta - \phi)$.
Denote $\mathcal{P}(g) = \{(r, \theta) : (r\cos\theta, r\sin\theta) \text{ is a pixel of } g\}$
(Polar coordinate net of g)

a.

If
$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$
, then $(r, \theta) \in \mathcal{F}(g)$.
Then: $\hat{g}(m, n) = \hat{g}(\omega, \theta)$
 $identify \quad \hat{g}(m, n) \quad \text{with}$
 $g(\omega, \theta)$
Consider a rotated image $\tilde{g}(r, \theta) = g(r, \theta + \theta_0)$ where θ is defined
between $-\theta_0$ to $\overline{y}_2 - \theta_0$.
 \vdots image g is rotated clockwisely by θ_0 .
DFT of \tilde{g} is:
 $\hat{g}(\omega, \theta) = \frac{1}{N^2} \sum_{(r, \theta) \in \mathcal{F}(g)} \tilde{g}(r, \theta) e^{-j2\pi \left(\frac{r\omega\cos(\theta - \theta)}{N}\right)}$
 $\hat{g}(\omega, \phi) = \frac{1}{N^2} \sum_{(r, \theta) \in \mathcal{F}(g)} \tilde{g}(r, \theta) e^{-j2\pi \left(\frac{r\omega\cos(\theta - \theta)}{N}\right)}$
 $\hat{g}(\omega, \phi) = \frac{1}{N^2} \sum_{(r, \theta) \in \mathcal{F}(g)} \tilde{g}(r, \theta + \theta_0)$.
 $\hat{g}(\omega, \phi) = \hat{g}(\omega, \phi + \theta_0)$. (ϕ is also defined between $-\theta_0$ to $\overline{y}_2 - \theta_0$.

2

.

-

Now, DFT of
$$\tilde{g} = \hat{g}$$
 (given by: $\sum_{k=0}^{3} \sum_{l=-3}^{0} \tilde{g}(k,l) e^{-j2\pi} (\frac{km+ln}{4})$
= $\begin{pmatrix} 0 & 0 & 0 & \frac{1}{4} \\ 0 & 0 & 0 & -\frac{1}{4} \\ 0 & 0 & 0 & \frac{1}{4} \\ 0 & 0 & 0 & -\frac{1}{4} \\ 0 & 0 & 0 & -$

-

4. DFT of a shifted image
Let
$$g = (g(k', l'))$$
 be a NXN image, where the indices are taken as:
 $-k_0 \le k' \le N-1-k_0$ and $-l_0 \le l' \le N-1-l_0$
Let \tilde{g} be shifted image of g defined as:
 $\tilde{g}(k, l) = g(k-k_0, l-l_0)$ where $0 \le k \le N-1$
Then: $\hat{g}(m, n) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k-k_0, l-l_0) e^{-j2\pi} (\frac{km+ln}{N})$
 $= \frac{1}{N^2} \sum_{k=0}^{N-1-k_0} g(k', l') e^{-j2\pi} (\frac{km+l'n}{N}) e^{-j2\pi} (\frac{kom+l_0n}{N})$
 $\tilde{g}(m, n)$

$$\hat{g}(m,n) = \hat{g}(m,n) e^{-j2\pi \left(\frac{k}{m} + \frac{k}{n}\right)}$$
Remark: $\hat{g}(m-m, n-n) = DFT \left(g \times e^{j2\pi \left(\frac{m}{m} + \frac{k}{n} - \frac{k}{n}\right)}\right)$ with carefully chosen indices!

Note. (Spatial domain) Linear fillering: J×g (inear combination of heighborhood pixel DET values) Modifying the MNÍ O 9 (frequency domain) Fourier coefficients pixel-wise by multiplication) multiplication

Image enhancement in the frequency domain:
Goal: 1. Remove high-frequency components (low-pass filter) for image denoising.
2. Remove low-frequency components (high-pass filter) for the extraction
of image details. non-edge
Let
$$\hat{F}$$
 be the DFT of an NXN image F . (indices taken
from 0 to N-1)
Then: for all $0 \le m, n \le N-1$,
 $j = \frac{2\pi}{N} (km + ln)$
 $F(m, n) = \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \hat{F}(k, l) \in \frac{1}{N} (km + ln)$
 $\hat{F}(k, l)$ is associated to the complex function $g(m, n) = c$
Goal: Remove "jumpy" components by setting Suitable $\hat{F}(k, l)$ to zero.

= a /// + b //// Mm + c \\\\\\\ lo removo noise, truncate c (let c=0)

1. When k and l are close to 0, $\hat{F}(k,l)$ is associated to $g(m,n) = e^{j\frac{2\pi}{N}(km+ln)}$ Observation: i. Fourier coefficients at the bottom left are associated to ~ 1 (constant) 10 w frequency components! 2. When k and L are close to N, $\hat{F}(k,l)$ is associated to $g(m,n) = e^{j\frac{2\pi}{N}(km+ln)} \approx e^{j\frac{2\pi}{N}(Nm+Nn)} = e^{j\frac{2\pi}{N}(m+n)} \approx 1$ (Not "jumpy") (Not "jumpy") i. Fourier coefficients at the bottom right are associated to low frequency components 1 2. Similarly, we can check that Fourier coefficients at the 4 corners are associated to low frequency components. 3. Fourier coefficients in the middle are associated to high frequency Components = When k and I are close to N/2 Low i Low i. High - pass filtering F(k,l) is associated to: $g(m,n) = e^{j\frac{2\pi}{N}}(km+ln) \approx e^{j\frac{2\pi}{N}}(\frac{N}{2}m+\frac{N}{2}n) = -(High) = -$ Remove coefficients at 4 corners Low-pass filtering $= e^{\partial T(m+n)} = (-1)^{m+n}$ Low Low Remove coefficients at the center (most "jumiy")

Centralisation:
Assume periodic conditions on F.
We can let
$$\tilde{F}(u,v) = \hat{F}(u-\frac{N}{2}, v-\frac{N}{2})$$
 when $0 \le u \le N-1$
 $0 \le v \le N-1$
Then, High-frequency components are located at 4 conners of $\tilde{F}(u,v)$
Low-frequency components are located at centur of $\tilde{F}(u,v)$
Let F be an image whose indices are taken between $-\frac{N}{2}$ to $\frac{N}{2}$
Then, DFT(F) is a matrix whose indices are also taken
between $-\frac{N}{2}$ to $\frac{N}{2}$.
In this case, Fourier coefficients located at 4 conners of DFT(F)
are associated to high-frequency components (jumpy)
Fourier coefficients located in the middle of DFT(F) are associated
to low - frequency components (less jumpy)

Proceedures for image processing by modifying Fourier coefficients
Given an image
$$I = (I_{ij}) - \frac{1}{2} \leq i, j \leq \frac{1}{2}$$
.
Compute DFT of I (Denote $\hat{I} = DFT(I)$)
Then: Obtain a new DFT matrix, \hat{T}^{new} , by:
 $\hat{T}^{new} = H \odot \hat{T}$ (Here $H \odot \hat{I}(u,v) = H(u,v) \hat{I}(u,v)$)
H is a suitable filter.
Finally, obtain an improved image by inverse DFT:
 $I^{new} = \hat{U}DFT(\hat{T}^{new})$
inverse DFT

Example of Low-pass filters for image denoising
Assume that we work on the Centered Spectrum!
That is, consider
$$\hat{F}(u,v)$$
 where $-\frac{1}{2} \le u \le \frac{1}{2} - 1$, $-\frac{1}{2} \le w \le \frac{1}{2} - 1$.
1 Ideal low pass filter (ILPF):
 $H(u,v) = \begin{cases} 1 & \text{if } D(u,v) := u^2 + v^2 \le D^2 \\ 0 & \text{if } D(u,v) > D^2 \end{cases}$
In 1-dim Cross-section, $iDFT(H(u,v))$ looks like:
 $\int_{u,v} \frac{1}{1-\frac{1}{2}} \sum_{u,v} \frac{1}{1-\frac{1}{2}} \sum_{u,v}$

Good: Simple Bad : Produce ringing effect! 2

anter

-

18.000

12

-