Lecture 7:
Recall:
Discrete Fourier Transform:
Definition:
The 2D DFT of a $M \times N$ image $g=(g(k, l))_{k, l}$, where $0 \leqslant k \leqslant M-1$, $0 \leq l \leq N-1$ is defined as:

$$
\begin{aligned}
& -1 \text { is defined as: } \\
& \hat{g}(m, n)=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} g(k, l) e^{-j 2 \pi\left(\frac{k m}{M}+\frac{l n}{N}\right)} \\
& \quad\left(\text { where } j=\sqrt{-1}, e^{j \theta}=\cos \theta+j \sin \theta\right)
\end{aligned}
$$

Remark: The inverse of DFT is given by:

$$
\begin{aligned}
& g(p, q)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{g}(m, n) e^{j} \hat{N}^{j 2 \pi\left(\frac{p m}{M}+\frac{q n}{N}\right)} \\
& \text { (no } \frac{1}{M_{n}!} \text {) } \\
& \text { (no -vt sign) }
\end{aligned}
$$

Why is DFT useful in imaging:

1. DFT of convolution:

Recall: $g * \omega(n, m)=\sum_{n^{\prime}=0}^{N-1} \sum_{m^{\prime}=0}^{M-1} g\left(n-n^{\prime}, m-m^{\prime}\right) \omega\left(n^{\prime}, m^{\prime}\right)$

$$
\left(g, m \in M_{N \times M}(\mathbb{R})\right)
$$

Then, $\operatorname{DFT}(g * w)(p, q)=\operatorname{MNDFT}(g)(p, q) \cdot \operatorname{DFT}(w)(p, q)$ for all $D \leq p \leq N-1,0 \leq q \leq M-1$
In matrix form, we can write $\operatorname{DFT}(g * \omega)=\operatorname{DFT}(g) \odot \operatorname{DFT}(\omega)$ entrywise multiplication
\therefore DFT of convolution can be reduced to simple multiplication!

Note:

$$
\begin{aligned}
& \text { (Spatial domain) } I * g \quad\left(\begin{array}{l}
\text { Linear filtering: } \\
\text { Linear combination of }
\end{array}\right. \\
& \text { neighborhood pixel } \\
& \text { values) } \\
& \text { (Frequency domain) MNI } \underset{\substack{\text { pixe(-wige } \\
\text { multiplication }}}{\odot} \hat{g} \text { by multiplication) }
\end{aligned}
$$

2. Average value of image
3. DFT of a rotated image

Consider a $N \times N$ image g.
Then: $\hat{g}(m, n)=\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k, l) e^{-j 2 \pi\left(\frac{k m+l n}{N}\right)}$
Write k and l in polar coordinates:

$$
k \equiv r \cos \theta ; \quad l=r \sin \theta
$$

Similarly, write $m \equiv \omega \cos \phi ; n=\omega \sin \phi$.
Note that: $k m+l n=r \omega(\cos \theta \cos \phi+\sin \theta \sin \phi)=r \omega \cos (\theta-\phi)$.
Denote $P(g)=\{(r, \theta):(r \cos \theta, r \sin \theta)$ is a pixel of $g\}$
(Polar coordinate net of g)

If $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$, then $(r, \theta) \in \mathcal{P}(g)$.

Then:

$$
\underbrace{\hat{g}(\omega, \phi)}_{\text {Identify } \hat{g}(m, n) \text { with }} \left\lvert\, \begin{gathered}
\hat{g}(m, n)=\hat{g}(\omega, \phi) \\
N^{2}
\end{gathered} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \underbrace{g(r, \theta)}_{\substack{\text { Identify } \\
g(k, l) \text { with }}} e^{-j 2 \pi\left(\frac{r \omega \cos (\theta-\phi)}{N}\right)}\right.
$$

Consider a rotated image $\tilde{g}(r, \theta)=g\left(r, \theta+\theta_{0}\right)$ where θ is defined between - θ_{0} to $\pi / 2-\theta_{0}$.
\therefore image g is rotated clockwisely by θ 。

$$
\begin{aligned}
& \text { DFT of } \tilde{g} \text { is: } \\
& \hat{\tilde{g}}(\omega, \phi)=\frac{1}{N^{2}} \sum_{(r, \theta) \in f(\tilde{g})} \tilde{g}(r, \theta) e^{-j 2 \pi\left(\frac{r \omega \cos (\theta-\phi)}{N}\right)}=\frac{1}{N^{2}} \sum_{(r, \tilde{\theta}) \in \mathcal{P}(g)} g(r, \tilde{\theta}) e^{-j 2 \pi\left(\frac{r \omega \cos \left(\tilde{\theta}-\theta_{0}-\phi\right)}{N}\right)} \\
& \therefore \hat{\tilde{\theta}}(\omega, \phi)=\hat{g}\left(\omega, \phi+\theta_{0}\right) . \quad\left(\phi \text { is also defined between }-\theta_{0} \text { to } \pi / 2-\theta_{0}\right)
\end{aligned}
$$

DFT

Example: Let $g=\left(\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0\end{array}\right)$. Then: $\hat{g}=\left(\begin{array}{cccc}\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
Note that g in the coordinate system:

Rotated by 90°

$$
\xrightarrow{\text { clockwisely }}
$$

Note that indices of \tilde{g} are taken as: $\left\{\begin{array}{l}-3 \leq l \leq 0 \\ 0 \leq k \leq 3 .\end{array}\right.$

Now, DFT of $\tilde{g}=\hat{\tilde{g}}$ (given by: $\sum_{k=0}^{3} \sum_{l=-3}^{0} \tilde{g}(k, l) e^{-j 2 \pi\left(\frac{k m+l n}{4}\right)}$

$$
\left.\begin{aligned}
= & \left(\begin{array}{cccc}
0 & 0 & 0 & 1 / 4 \\
0 & 0 & 0 & -1 / 4 \\
0 & 0 & 0 & 1 / 4 \\
0 & 0 & 0 & -1 / 4
\end{array}\right) \\
& l_{-3}-2 \begin{array}{ll}
-1 & 0
\end{array}
\end{aligned}\right|_{k} ^{0} \begin{array}{lll}
0 & & 0 \leq k \leq 3 \\
2 & & -3 \leq l \leq 0 \\
3 &
\end{array}
$$

4. DFT of a shifted image

Let $g=\left(g\left(k^{\prime}, l^{\prime}\right)\right)$ be a $N \times N$ image, where the indices are taken as:

$$
-k_{0} \leqslant k^{\prime} \leqslant N-1-k_{0} \text { and }-l_{0} \leqslant l^{\prime} \leqslant N-1-l_{0}
$$

Let \tilde{g} be shifted image of g defined as:

$$
\tilde{g}(k, l)=g\left(k-k_{0}, l-l_{0}\right) \text { where } 0 \leq k \leq N-1
$$

Then: $\hat{\tilde{g}}(m, n)=\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g\left(k-k_{0}, l-l_{0}\right) e^{-j \pi\left(\frac{k_{m}}{N}\right)}$

$$
\begin{aligned}
& =\underbrace{\frac{N^{2}}{N^{2}} \sum_{k_{k=0}^{\prime}=-k_{0}}^{\sum_{l=0}} g\left(k-k_{0}=-l_{0}, l-l_{0}\right) e^{N-1-l_{0}} g\left(k^{\prime}, l^{\prime}\right) e^{-j 2 \pi\left(\frac{k^{\prime} m+l^{\prime} n}{N}\right)}}_{\hat{g}(m, n)} e^{-j 2 \pi\left(\frac{k_{0} m+l_{0} n}{N}\right)}
\end{aligned}
$$

$$
\therefore \hat{\tilde{g}}(m, n)=\hat{g}(m, n) e^{-j 2 \pi\left(\frac{k \cdot m+1 \cdot n}{N}\right)}
$$

Remark: $\hat{g}\left(m-m_{0}, n-n_{0}\right)=\operatorname{DFT}\left(g \times e^{j 2 \pi\left(\frac{m_{0} k+n_{0} l}{N}\right)}\right)$ with carefully chosen indices!

Note:

$$
\begin{aligned}
& \text { (Spatial domain) } I * g \quad\left(\begin{array}{l}
\text { Linear filtering: } \\
\text { Linear combination of }
\end{array}\right. \\
& \text { neighborhood pixel } \\
& \text { values) } \\
& \text { (Frequency domain) MNI } \underset{\substack{\text { pixe(-wige } \\
\text { multiplication }}}{\odot} \hat{g} \text { by multiplication) }
\end{aligned}
$$

Image enhancement in the frequency domain:
Goal: 1. Remove $\underbrace{\text { hive }}_{\text {nigh }}$ frequency components (lo w-pass filter) for image denoising.
2. Remove low -frequency components (high-pass filter) for the extraction of image details. non-edge
Let \hat{F} be the DFT of an $N \times N$ image F. (indices taken from 0 to $N-1$)
Then: for all $0 \leq m, n \leq N-1$,

$$
F(m, n)=\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \hat{F}(k, l) e^{j \frac{2 \pi}{N}(k m+l n)}
$$

- $\hat{F}(k, l)$ is associated to the complex function $g(m, n)=e^{j \frac{2 \pi}{N}(k m+l n)}$
$\therefore F(k, l)$ is associated to the complex function $g(m, n)=C$
Goal: Remove "jumpy" components by setting suitable $\hat{F}(k, l)$ to zero.

$$
\begin{aligned}
& +c \int A N A N A
\end{aligned}
$$

To remove noise, truncate c (let $c=0$)

Observation:

1. When k and l are close to $0, \hat{F}(k, l)$ is a ssociated to $g(m, n)=e^{j \frac{2 \pi}{N}(k m+l n)}$ $\approx e^{j \frac{2 \pi}{N}(o m+o n)}$
\therefore Fourier coefficients at the bottom left are associated to ≈ 1 (constant) low frequency components!
2. When k and l are close to $N, \hat{F}(k, l)$ is associated to

$$
g(m, n)=e^{j \frac{j \pi}{N}(k m+l n)} \approx e^{j \frac{2 \pi}{N}(N m+N n)}=e^{j 2 \pi(m+n)} \approx 1 \quad \text { (Not "jumpy") }
$$

\therefore Fourier coefficients at the bottom right are associated to low frequency components 1
2. Similarly, we can check that Fourier coefficients at the 4 corners are associated to low frequency components.
3. Fourier coefficients in the middle are associated to high-frequency components:
When k and l are close to $N / 2$ $\hat{F}(k, l)$ is associated to :

$$
\begin{aligned}
& F(k, l) \text { is associated to } \\
& g(m, n)=e^{j \frac{2 \pi}{N}(k m+l n)} \approx e^{j \frac{2 \pi}{N}\left(\frac{N}{2} m+\frac{N}{2} n\right)} \\
&=e^{j \pi(m+n)}=(-1)^{m+n}
\end{aligned}
$$

(most "jumpy")
\therefore High - pass filtering
Remove coefficients at 4 corners Low -pass filtering
Remove "coefficients at the center

Centralisation:
Assume periodic conditions on F.
We can let $\tilde{F}(u, v)=\hat{F}\left(u-\frac{N}{2}, v-\frac{N}{2}\right)$ where

$$
\begin{aligned}
& 0 \leqslant u \leqslant N-1 \\
& 0 \leqslant v \leqslant N-1
\end{aligned}
$$

Then, High-frequency components are located at 4 corners of $\tilde{F}(u, v)$
Low -frequency components are located at center of $\tilde{F}(u, v)$
Let F be an image whose indices are taken between $-\frac{N}{2}$ to $\frac{N}{2}$
Then, DFT(F) is a matrix whose indices are also taken between $-\frac{N}{2}$ to $\frac{N}{2}$.
In this case, Fourier coefficients located at 4 comers of DFT(F) are associated to high-frequency components (jumpy)
Fourier coefficients located in the middle of DFT(F) are associated to low - frequency components (less jumpy)

Procedures for image processing by modifying Fourier coefficients
Given an image $I=\left(I_{i j}\right)_{-\frac{N}{2} \leqslant i, j} \leqslant \frac{N}{2}$.
Compute DFT of I (Denote $\hat{I}=D F T(I)$)
Then: obtain a new DFT matrix, $\hat{I}^{n e w}$, by:

$$
\hat{I}^{\text {new }}=H \odot \hat{I} \quad(\text { Here } \quad H \odot \hat{I}(u, v)=H(u, v) \hat{I}(u, v))
$$

H is a suitable filter. pixel-wismultiplication

Finally, obtain an improved image by inverse DFT:

$$
I^{\text {new }}=\underbrace{i D F T}_{\text {inverse } D F T}\left(\hat{I}^{\text {new }}\right)
$$

Note: Let $h=\underbrace{i \operatorname{DFT}(H)}_{\text {inverse } D F T}$

$$
\begin{aligned}
& H \odot I \text { inverse DFT } \underbrace{}_{\substack{ }} \neq I \\
& \substack{\text { normalizing } \\
\text { constant }}
\end{aligned}
$$

Example of Low-pass filters for image denoising
Assume that we work on the centered spectrum!
That is, consider $\hat{F}(u, v)$ where $-N / 2 \leq u \leq N / 2-1,-N / 2 \leq v \leq N / 2-1$. 1 Ideal low pass filter (ILPF):

$$
H(u, v)=\left\{\begin{array}{lll}
1 & \text { if } & D(u, v):=u^{2}+v^{2} \leq D_{0}^{2} \\
0 & \text { if } & D(u, v)>D_{0}^{2}
\end{array}\right.
$$

In 1-dim cross-section, $\operatorname{iDF} T(H(u, v))$ looks like:
 every pixel values of I has an effect on $h * I(x, y)!!$

Good: Simple
Bad: Produce ringing effect!

