Lecture 3
Recall:
Convolution
Definition: Consider $k \in M_{N \times N}(\mathbb{R})$ and $f \in M_{N \times N}(\mathbb{R})$. Assume k and f are periodically extended. That is:

$$
\begin{aligned}
& k(x, y)=k(x+p N, y+q N) \\
& f(x, y)=f(x+p N, y+q N)
\end{aligned}
$$

where p, q are integers.

The convolution $k * f$ of k and f is a $N \times N$ matrix defined as:

$$
k * f(\alpha, \beta)=\sum_{x=1}^{N} \sum_{y=1}^{N} k(x, y) f(\alpha-x, \beta-y) \quad \text { for } \quad 1 \leq \alpha, \beta \leq N
$$

Geometric meaning of convolution
Consider $k \in M_{3 \times 3}(\mathbb{R})$ and $f \in M_{3 \times 3}(\mathbb{R})$.
Consider: $k * f(2,2)=\sum_{x=1}^{3} \sum_{y=1}^{3} k(2-x, 2-y) f(x, y)$

$$
\begin{aligned}
& k * f(2,2)= \\
= & k(1,1) f(1,1)+k(1,0) f(1,2)+k(1,-1) f(1,3)+k(0,1) f(2,1)+k(0,0) f(2,2) \\
& \quad+k(0,-1) f(2,3)+k(-1,1) f(3,1)+k(-1,0) f(3,2)+k(-1,-1) f(3,3)
\end{aligned}
$$

Geometrically, it can be visualized as dot product:

Overlay k onto f and take dot product.

Definition: The point spread function $h^{\alpha, \beta}(x, y)$ of a linear image transformation is called shift-invariant if there exists a function \tilde{h} such that

$$
h^{\alpha, \beta}(x, y)=\tilde{h}(\alpha-x, \beta-y)
$$

for all $1 \leq x, y, \alpha, \beta \leq N$.
Remark: Given $k \in M_{N \times N}(\mathbb{R})$. Let $\mathcal{1}$ be a linear image transformation defined by: $O(f)=k * f$ for all $f \in M_{N \times N}(\mathbb{R})$.
Then: the point spread function of \mathcal{O} is shift-invariant.

$$
\begin{aligned}
& \text { Let } g=\theta(f) \\
& g(\alpha, \beta)=\theta(f)(\alpha, \beta)=\sum_{x=1}^{N} \sum_{y=1}^{N} \begin{array}{r}
h(\alpha-x, \beta-y) f(x, y) \\
h^{\alpha, \beta}(x, y)
\end{array}
\end{aligned}
$$

Similarity between images
Need to define matrix norm $\|\cdot\|$ such that: for $\forall f, g \in I$, we can define similarity between f and g as $\|f-g\|$.
Definition: A vector/matrix norm is a function $\|\cdot\|: \mathbb{R}^{m}\left(\right.$ or $\left.\mathbb{R}^{m \times n}\right) \rightarrow \mathbb{R}$ so that for any $\vec{x}, \vec{y} \in \mathbb{R}^{m}$ (or $\mathbb{R}^{m \times n}$) and $\alpha \in \mathbb{R}$, we have:

1. $\|\vec{x}\| \geqslant 0,\|\vec{x}\|=0$ iff $\vec{x}=0$.
2. $\|\vec{x}+\vec{y}\| \leqslant\|\vec{x}\|+\|\vec{y}\|$ (triangle inequality)
3. $\|\alpha \vec{x}\|=|\alpha|\|\vec{x}\|$

Example:

$$
\left.\begin{array}{l}
\cdot\|\vec{x}\|_{1}=\sum_{i=1}^{m}\left|x_{i}\right| \quad \vec{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{\top} \\
\cdot\|\vec{x}\|_{2}=\left(\sum_{i=1}^{m} x_{i}^{2}\right)^{1 / 2} \\
\cdot\|\vec{x}\|_{\infty}=\max _{i=1,2, \ldots, m}\left|x_{i}\right|
\end{array}\right\} \begin{aligned}
& \text { Vector } \\
& \text { norm }
\end{aligned}
$$

Remark: In image processing, vector norm can be considered as matrix norm.
Suppose $A=\left(\begin{array}{cccc}a_{11} & a_{12} & & a_{1 N} \\ a_{21} & a_{22} & & a_{2 N} \\ \vdots & \vdots & & \vdots \\ a_{N 1} & a_{N 2} & & a_{N N}\end{array}\right) \in M_{N \times N}(R) \rightarrow \vec{A}=\left(\begin{array}{c}a_{11} \\ a_{21} \\ \vdots \\ a_{N 1} \\ \vdots \\ a_{1 N} \\ a_{1 N} \\ a_{1 N}\end{array}\right)^{1 s+c o d}$ of A
Then: $\|A\|_{1}=\|\vec{A}\|_{1}=\sum_{i=1}^{N} \sum_{j=1}^{N}\left|a_{i j}\right|$
Given two images A and B, similarity between then can be measured by: $\sum_{i=1}^{N} \sum_{j=1}^{N}\left|a_{i j}-b_{i j}\right|$
Another commonly used matrix norm
Definition: (Frobenius norm)

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}{ }^{2}}
$$

Let $\vec{a}_{j}=j$ th col of A. We have: $\|A\|_{F}=\sqrt{\sum_{j=1}^{n}\left\|a_{j}\right\|_{2}^{2}}=\sqrt{\operatorname{tr}\left(A^{\top} A\right)}=\sqrt{\operatorname{tr}\left(A A^{\top}\right)}$ where $\operatorname{tr}(\cdot)=$ trace of the matrix.

Importance of defining correct norm

Figure 1: The images on the left and on the right are equally similar to the image in the middle in terms of the entrywise 1-norm. On the other hand, the image on the right is significant less similar to the image in the middle in terms of the entrywise 2-norm than the image on the left.

Figure 2: The images on the left and on the right are equally similar to the image in the middle in terms of the entrywise 2-norm. On the other hand, the image on the right is significant less similar to the image in the middle in terms of the entrywise 1-norm than the image on the left.

Representation of \mathcal{O} by a matrix H : Let $g=O(f) \in M_{N \times N}(\mathbb{R})$.
Then: $g(\alpha, \beta)=\sum_{x=1}^{N} \sum_{y=1}^{N} h^{\alpha, \beta}(x, y) f(x, y)$ for $1 \leq \alpha, \beta \leq N$
So,

$$
\begin{aligned}
& \left\{\begin{array}{c}
g(1,1)=h^{1,1}(1,1) f(1,1)+\ldots+h^{\prime, 1} f(1, N)+\ldots+h^{1^{\prime \prime}}(N, 1) f(N, 1)+\ldots+h^{\prime, 1}(N, N) f(N, N) \\
g(2,1)=h^{2,1}(1,1) f(1,1)+\ldots+h^{2,1} f(1, N)+\ldots+h^{h^{, 1}}\left(N, N f(N, 1)+\ldots+h^{2^{\prime,}}(N, N) f(N, N)\right. \\
\vdots
\end{array}\right.
\end{aligned}
$$

(*)

$$
\begin{aligned}
& g(\alpha, \beta)=h^{\alpha, \beta}(1,1) f(1,1)+\ldots+h^{\alpha, \beta} f(1, N)+\ldots+h^{\alpha, \beta}(N, 1) f(N, 1)+\ldots+h^{\alpha / \beta}(N, N) f(N, N) \\
& \vdots \\
& g(N, N)=h^{N, N}(1,1) f(1,1)+\ldots+h^{N, N} f(1, N)+\ldots+h^{N, N}(N, 1) f(N, 1)+\ldots+h^{N, N}(N, N) f(N, N) \\
&g(1,1)) \mid \text { Variables on RHS: }
\end{aligned}
$$

N^{2} equations, N^{2} variables. $L H S=\left(\begin{array}{c}g(1,1) \\ y(2,1) \\ \vdots(N, 1) \\ \vdots \\ g(1, N) \\ g(N, N)\end{array}\right)=\vec{g}\left|\begin{array}{|c}\mathbb{R}^{N^{2}}\end{array}\right|\left(\begin{array}{c}\text { Variables } \\ \text { fl, } 1,1) \\ f(1,1) \\ f(N, 1) \\ \vdots \\ f(1, N) \\ f(N, N)\end{array}\right)=\vec{f} \in \mathbb{R}^{N^{2}}$

So, (x) can be written in matrix form:

$$
\vec{g}=\mid \vec{f} \quad\left(H \mid \in M_{N^{2} \times N^{2}}(\mathbb{R})\right)
$$

H is called the transformation matrix representing 0 .

Example 1.1 A linear operator is such that it replaces the value of each pixel by the average of its four nearest neighbours. Assume the image is repeated in all directions. Apply this operator \mathcal{O} to a 3×3 image. Find the transformation matrix corresponding to \mathcal{O}.

Solution:

$$
\begin{aligned}
& \begin{array}{lllllll}
\\
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\left(\begin{array}{llll}
f_{31} & f_{32} & f_{33} \\
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right) \begin{array}{llll}
& f_{12} & f_{13} & \leftarrow \text { Row } 1 \\
f_{31} & f_{22} & f_{23} & \leftarrow \text { Row } 1 \\
f_{32} & f_{33} & \leftarrow \text { Row }
\end{array} \\
& \begin{array}{cccccccc}
\uparrow & \uparrow & f_{11} & f_{12} & f_{13} & \uparrow & \uparrow & \uparrow
\end{array} \leftarrow \text { Row } 4 \\
& g_{22}=\frac{f_{12}+f_{21}+f_{23}+f_{32}}{4} ; g_{33}=\frac{f_{23}+f_{32}+f_{31}+f_{13}}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Write } \\
& \vec{g}=\left(\begin{array}{l}
g_{11} \\
g_{21} \\
g_{31} \\
g_{12} \\
g_{22} \\
g_{32} \\
g_{13} \\
g_{23} \\
g_{33}
\end{array}\right)=\left(\begin{array}{cccccccc}
0 & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 \\
0 & \frac{1}{4} & 0 & 0 & \frac{1}{4} & 0 \\
& & & & & & \\
g_{11}=\frac{f_{13}+f_{31}+f_{12}+f_{21}}{4} \\
g_{21}=\frac{f_{11}+f_{22}+f_{31}+f_{23}}{4}
\end{array} \quad l\right.
\end{aligned}
$$

By careful examination, we see that

$$
\left[\begin{array}{ccccccccc}
0 & 1 / 4 & 1 / 4 & 1 / 4 & 0 & 0 & 1 / 4 & 0 & 0 \\
1 / 4 & 0 & 1 / 4 & 0 & 1 / 4 & 0 & 0 & 1 / 4 & 0 \\
1 / 4 & 1 / 4 & 0 & 0 & 0 & 1 / 4 & 0 & 0 & 1 / 4 \\
1 / 4 & 0 & 0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 & 0 & 0 \\
0 & 1 / 4 & 0 & 1 / 4 & 0 & 1 / 4 & 0 & 1 / 4 & 0 \\
0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 & 0 & 0 & 0 & 1 / 4 \\
1 / 4 & 0 & 0 & 1 / 4 & 0 & 0 & 0 & 1 / 4 & 1 / 4 \\
0 & 1 / 4 & 0 & 0 & 1 / 4 & 0 & 1 / 4 & 0 & 1 / 4 \\
0 & 0 & 1 / 4 & 0 & 0 & 1 / 4 & 1 / 4 & 1 / 4 & 0
\end{array}\right]
$$

All entries are given by the point spread function

$$
h^{\alpha, \beta}(x, y)
$$

Example Consider $0: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N}(\mathbb{R})$ defined by:
$O(f)=\left(\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right) f\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ for all $f \in M_{N \times N}(\| 2)$.
Let $g=O(f)$. Then:

$$
\begin{aligned}
& \text { Let } g=O(f) \text {. Then: } \\
& g=\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{lll}
f_{11}+3 f_{12} & 2 f_{11}+4 f_{12} \\
f_{11}+2 f_{21}+3 f_{12}+6 f_{22} & 2 f_{11}+4 f_{21} \\
+4 f_{12}+8 f_{22}
\end{array}\right) \\
&\left(\begin{array}{l}
g_{11} \\
g_{21} \\
g_{12} \\
g_{22}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 3 & 0 \\
1 & 2 & 3 & 6 \\
2 & 0 & 4 & 0 \\
2 & 4 & 4 & 8
\end{array}\right)\left(\begin{array}{l}
f_{11} \\
f_{21} \\
f_{12} \\
f_{22}
\end{array}\right) \\
&\left(\begin{array}{lll}
1\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right) & 3\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right) \\
2\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right) & 4\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)
\end{array}\right)=\left(\begin{array}{lll}
1 A & 3 A \\
2 A & 4
\end{array}\right)
\end{aligned}
$$

Remark: - Separable image transformation has a special structure.

- Let A and B be two matrices.

$$
\text { Kronecker product of } A \text { and } B=A \otimes B:=\left(\begin{array}{ccc}
a_{11} B & \ldots & a_{1 N} B \\
a_{21} B & \ldots & a_{2 N} B \\
\vdots & \vdots & \\
a_{N 1} B & \ldots & a_{N N} B
\end{array}\right)
$$

- In general, if $\theta: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N}(\mathbb{R})$ is defined by:

$$
O(f)=A f B \text { for all } f \in M_{N \times N}(\mathbb{R}) \text {, where } A, B \in M_{N \times N}(\mathbb{R})
$$

Then, the transformation matrix of \mathcal{O} is:

$$
H=B^{\top} \times A
$$

- So, instead of storing $N^{2} \times N^{2}=N^{4}$ entries, we only heed to store entries of A and B, which is $2 N^{2}$ (much less storage)

Image decomposition
Let $g=A f B$ (Separable). Then $=f=A^{-1} g B^{-1}$
Write: $A^{-1}=\left(\begin{array}{ccc}1 & 1 & 1 \\ \overrightarrow{u_{u}} & \vec{u}_{2} & \vec{u}_{N}\end{array}\right) ; \quad B^{-1}=\binom{-\vec{v}_{\top}^{\top}}{\vec{v}_{2}^{\top}} \quad$ (assume that A and B are invertible)

Then:

$$
g=\sum_{i=1}^{N} \sum_{j=1}^{N} g_{i j}{\overrightarrow{u_{i}} \vec{v}_{j}^{\top}}^{\top}
$$

Proof:

$$
\begin{aligned}
& f=A^{-1} f B^{-1}=A^{-1}\left(\sum_{i=1}^{N} \sum_{j=1}^{N} f_{i j}\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & 1 & \vdots \\
0 & 1 & 0 \\
0 & \ldots & 0
\end{array}\right) \in i^{\text {th }} \text { row }\right) B^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore f=\text { linear combination of }\left\{\vec{u}_{i} \vec{v}_{j}^{\top}\right\}_{i, j}
\end{aligned}
$$

Definition: Each $\vec{u}_{i} v_{j}^{\top}$ is called an elementary image.
$\vec{u}_{i} v_{j}{ }^{\top}$ is also called the Outer product of \vec{u}_{i} and \vec{v}_{j}.
One important task in image processing:
Choose A and B such that:

1. Transformed image requires less storage (Many $g_{i j}=0$)
2. Take away some terms $g_{i j} \vec{u}_{i} \vec{v}_{j}^{\top} \quad$ (e.g. high-frequency) \rightarrow Better image!!
3. A^{-1} and B^{-1} are easy to compute!

Common example:
Orthogrual $u \Leftrightarrow u^{\top} u=I \quad \therefore \quad u^{-1}=u^{\top}$.

Example: Let $A=\frac{\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)}{A^{-1}} \frac{\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)}{g} \underbrace{\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)}_{B^{-1}}$
Then: $A=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)\left[1\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+2\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right]\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$

$$
\begin{aligned}
& =1\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)+2\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \\
& \left.=\frac{1}{g_{11}^{\prime \prime}}\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
0 & 0
\end{array}\right)+{\underset{g}{2 \prime 2}}_{2}^{(1} 1 \begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 3
\end{array}\right) \\
& \left(\begin{array}{l}
1 \\
1 \\
\vec{u}_{1}
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
\vec{v}_{1}^{\top}
\end{array}\right) \quad\binom{2}{1} \underbrace{1}_{\vec{u}_{2}} \underbrace{(13}_{\vec{v}_{2}^{\top}}) \\
& =1 \underbrace{\left(\begin{array}{ll}
3 & 1 \\
3 & 1
\end{array}\right)}_{\text {elementary image }}+2 \underbrace{\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right)}_{\text {elementary image }}
\end{aligned}
$$

Image decomposition
Image decomposition based on Singular Value Decomposition (SVD)
Definition: (SVD) For any $g \in M_{m \times n}$, the singular value decomposition (SVD) of g is a matrix factorization: $g=U \Sigma V^{\top}$, where $U \in M_{m \times m}, V \in M_{n \times n}$ are orthogonal, $\Sigma \in M_{m m n}$ is a diagonal matrix ($\Sigma_{i j}=0$ if $i \neq j$) with diagonal entries given by: $\sigma_{1} \geq \sigma_{2} \geq \ldots \geqslant \sigma_{r}>0$ with $r \leq \min (m, n) . \quad\left(U U^{\top}=U^{\top} U=I ; \quad V V^{\top}=V^{\top} V=I\right)$
Theorem: The rank of g is given by the number of non-zero singular values.
Proof: Rank $=\operatorname{dim}$ of column space.
Recall that $\operatorname{rank}(A B)=\operatorname{rank}(B)$ if A is invertible
$\operatorname{rank}(A B)=\operatorname{rank}(A)$ if B is invertible.
Suppose $g=U \Sigma V^{\top}$. Since U and V are invertible, $\operatorname{rank}(g)=\operatorname{rank}(\Sigma)$
= \# of non-zer. singular values

Remark: Consider an image g. Let $g=U \Sigma V^{\top}$ be the $S V D$ of g (with diagonal entries of Σ given by $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \geqslant \sigma_{r}>0$)

1. Note that $g=u \sum V^{\top}=\sum_{i=1}^{r} \sigma_{i} u(\overbrace{0_{0}}^{\ddots_{1}}$, . . it $V^{\top}=\sum_{i=1}^{r} \sigma_{i} \vec{u}_{i} \vec{v}_{i}^{\top}$ $\vec{u}_{i} \vec{v}_{i}{ }^{\top}$ is called the eigen-image of g under SVD.
2. For $N \times N$ image, the required storage is:

$$
\left(\frac{N}{\overrightarrow{u_{i}}}+\frac{N}{\bar{v}_{i}}+\frac{1}{\sigma_{i}}\right) \times \underset{r \text { terms }}{r}=(2 N+1) r
$$

Observation about SVD Let $A=U \Sigma V^{\top} \quad\left(\right.$ Let $\left.A \in M_{n \times n}\right)$

$$
\begin{aligned}
& \text { - } A^{\top} A=\left(U \Sigma v^{\top}\right)^{\top}\left(u \Sigma V^{\top}\right)=V \Sigma^{\top} \underbrace{u^{\top} u}_{I} \Sigma V^{\top}=V \Sigma^{\top} \Sigma V^{\top} \\
& \Rightarrow\left(A^{\top} A\right) V=V\left(\begin{array}{cccc}
\sigma_{1}^{2} & & & \\
& \sigma_{2}^{2} & & \\
& & \ddots & \\
& & & \sigma_{n}^{2}
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
& & \\
\left(A^{\top} A\right) \vec{v}_{1} & \cdots & \left(A^{\top} A\right) \vec{v}_{n} \\
& & \\
& &
\end{array}\right)=\left(\begin{array}{ccc}
\mid & & 1 \\
\sigma_{1}^{2} \vec{v}_{1} & \cdots & \sigma_{n}^{2} \vec{v}_{n} \\
1 & & 1
\end{array}\right) \\
& \Rightarrow\left(A^{\top} A \mid \vec{v}_{1}=\sigma_{1}{ }^{2} \vec{v}_{1}, \cdots,\left(A^{\top} A\right) \vec{v}_{n}=\sigma_{n}{ }^{2} \vec{v}_{n}\right.
\end{aligned}
$$

$\therefore \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are eigenvectors of $A^{\top} A$ with eigenvalues $\sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{n}^{2}$.

$$
\begin{aligned}
& \text { - } A A^{\top}=\left(U \Sigma V^{\top}\right)\left(u \Sigma V^{\top}\right)^{\top}=U \Sigma \underbrace{V^{\top} V}_{I} \Sigma^{\top} U^{\top}=U \Sigma \Sigma^{\top} U^{\top} \\
& \Rightarrow\left(A A^{\top}\right) U=U\left(\begin{array}{ccc}
\sigma_{1}^{2} & & \\
& \ddots & \\
& & \sigma_{n}{ }^{2}
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
A A^{\top} \vec{u}_{1} & & \\
1 & & A A^{\top} \vec{u}_{n} \\
1 & & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & & \\
\sigma_{1}^{2} \vec{u}_{1} & \ldots & \sigma_{n}^{2} \vec{u}_{n} \\
1 & & 1
\end{array}\right)
\end{aligned}
$$

$\therefore \vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ are eigenvectors of $A A^{\top}$ with eigenvalues

$$
\begin{aligned}
& \sigma_{1}{ }^{2}, \sigma_{2}{ }^{2}, \ldots, \sigma_{n}{ }^{2} \\
& \text { - } A=u \Sigma v^{\top} \Rightarrow A v=u \Sigma \Rightarrow\left(\begin{array}{ccc}
A & 1 & 1 \\
A \vec{v}_{1} & A \vec{v}_{2} & \ldots \\
1 & 1 & 1 \\
\vec{v}_{n}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\sigma_{1} \vec{u}_{1} & \sigma_{2} \vec{u}_{2} & \ldots \sigma_{n} \vec{u}_{n} \\
1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

\therefore For $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}>0$,

$$
\vec{u}_{1}=\frac{A \vec{v}_{1}}{\sigma_{1}}, \quad \vec{u}_{2}=\frac{A \stackrel{\rightharpoonup}{v}_{2}}{\sigma_{2}}, \ldots, \vec{u}_{r}=\frac{A \vec{v}_{r}}{\sigma_{r}}
$$

We can obtain $\vec{u}_{1}, \ldots, \vec{u}_{r}$ from $\vec{v}_{1}, \ldots, \vec{v}_{r}$.

$$
\begin{aligned}
& u^{\top} u=I \Rightarrow \vec{u}_{i} \cdot \vec{u}_{j}= \begin{cases}1 & \text { if } i=j \\
0 & \text { if } i \neq j\end{cases} \\
& V^{\top} V=I \Rightarrow \vec{v}_{i} \cdot \vec{v}_{j}=\left\{\begin{array}{lll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array}\right.
\end{aligned}
$$

$\therefore\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\}$ are orthonormal.
$\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ are orthonormal.

How to compute SVD
Let $A \in M_{n \times n}$

Step 1: Find eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and orthonormal eigenvectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ of $A^{\top} A \in M_{n \times n}$ (with $\left\|\vec{v}_{j}\right\|=1, j=1, \ldots, n$)
[Recall: $\left(A^{\top} A\right) \vec{v}_{j}=\lambda_{j} \vec{v}_{j}$]
Step 2: Define: $\Sigma=\left(\begin{array}{llll}\sqrt{\lambda_{1}} & & & \\ & \sqrt{\lambda} 2 & & \\ & & \ddots & \\ & & & \sqrt{\lambda}_{n}\end{array}\right) \in M_{n \times n}$

Step 3: For non-zero $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$,

$$
\begin{aligned}
& \text { For non-zero } \sigma_{1}, \sigma_{2}, \ldots, \vec{\sigma}_{r}, \\
& \text { let } \vec{u}_{1}=\frac{A \vec{v}_{1}}{\sigma_{1}}, \vec{u}_{2}=\frac{A \vec{v}_{2}}{\sigma_{2}}, \ldots, \vec{u}_{r}=\frac{A \vec{v}_{r}}{\sigma_{r}}
\end{aligned}
$$

Step 4: Extend $\left\{\vec{u}_{1}, \ldots, \vec{u}_{r}\right\}$ to the basis

$$
\left\{\vec{u}_{1}, \ldots, \vec{u}_{r}, \ldots, \vec{u}_{n}\right\} \text { of } \mathbb{R}^{n}
$$

Step 5: Let:

$$
\begin{aligned}
& U=\left(\begin{array}{ccc}
1 & 1 & 1 \\
\vec{u}_{1} & \vec{u}_{2} & \ldots \\
1 & 1 & 1
\end{array}\right) \in M_{m \times m} \\
& V=\left(\begin{array}{ccc}
\frac{1}{v_{1}} & \frac{1}{v_{2}} & \ldots \\
1 & \vec{v}_{n} \\
1 & 1 & 1
\end{array}\right) \in M_{n \times n}
\end{aligned}
$$

Then: $A=U \Sigma V^{\top}$

Example: $\left(2 \times 2\right.$ example) Find the SVD of $A=\left(\begin{array}{cc}4 & 0 \\ 3 & -5\end{array}\right)$
Step: $\quad A^{\top} A=\left(\begin{array}{cc}25 & -15 \\ -15 & 25\end{array}\right)$
(haracteristic polynomial : $\operatorname{det}\left(A^{\top} A-\lambda I\right)=(25-\lambda)(25-\lambda)-15^{2}$

$$
\begin{aligned}
& =\lambda^{2}-50 \lambda+400 \\
& =(\lambda-10)(\lambda-40)
\end{aligned}
$$

$\therefore A^{\top} A$ has two eigenvalues: $\lambda=10$ and $\lambda=40$
For $\lambda=4 \stackrel{\rightharpoonup}{0}=\left(A^{\top} A-40 I\right)=\left(\begin{array}{cc}-15 & -15 \\ -15 & -15\end{array}\right) \stackrel{\operatorname{RREF}}{\sim}\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right) . \quad \vec{v}=x_{1}\binom{-1}{+1}$
Choose $\vec{v}_{1}=\binom{-1}{1} / \sqrt{2}=\binom{-1 / \sqrt{2}}{+1 / \sqrt{2}}^{-15}-15{ }^{-15} .15 \quad\left(\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$
For $\lambda=10, \quad\left(A^{\top} A-10 I\right)=\left(\begin{array}{cc}15 & -15 \\ -15 & 15\end{array}\right)$
Find null space to find eigenvector.
Let $\vec{v}=\binom{x_{1}}{x_{2}}=$ eigenvector
RREF of $\left(\begin{array}{cc}15 & -15 \\ -15 & 15\end{array}\right) \leadsto\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)=0 \quad$ Then: $\quad x_{1}-x_{2}=0$
Choose $\vec{U}_{2}=\binom{1}{1} / \sqrt{1^{2}+1^{2}}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$

$$
\therefore \stackrel{\rightharpoonup}{v}=x_{1}\binom{1}{1} .
$$

$$
\therefore V=\left(\begin{array}{cc}
-1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right) \quad \text { and } \quad \Sigma=\left(\begin{array}{cc}
\sqrt{40} & 0 \\
0 & \sqrt{10}
\end{array}\right)
$$

Step 2: $\vec{u}_{1}=\frac{A \vec{v}_{1}}{\sigma_{1}}=\binom{-1 / \sqrt{5}}{-2 / \sqrt{5}}$ and $\vec{u}_{2}=\frac{A \vec{v}_{2}}{\sigma_{2}}=\binom{2 / \sqrt{5}}{-1 / \sqrt{5}}$.
\therefore SVD of A is:

$$
\left(\begin{array}{cc}
4 & 0 \\
3 & -5
\end{array}\right)=\underbrace{\left(\begin{array}{cc}
-1 / \sqrt{5} & 2 / \sqrt{5} \\
-2 / \sqrt{5} & -1 / \sqrt{5}
\end{array}\right)}_{U} \underbrace{\left(\begin{array}{cc}
\sqrt{40} & 0 \\
0 & \sqrt{10}
\end{array}\right)}_{\Sigma} \underbrace{\left(\begin{array}{cc}
-1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right)}_{V^{\top}}
$$

