Lecture 12:

Image denoising using energy minimization Let g be a noisy image corrupted by additive noise n. |hen: g(x, y) = f(x, y) + n(x, y)Clean image noise (non-smooth) Recall: Laplacian masking: g = f - Af (Obtain a sharp image from Conversely, to get a smooth image f from a non-smooth image g, We can solve the PDE for $f : -\Delta f + f = g$ unknown brown We will show that solving the above equation is equivalent to minimizing something: $E(f) = \iint \left(f(x,y) - g(x,y)\right)^2 dx dy + \iint \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f'}{\partial y}\right)^2 dx dy$

In the discrete case, the PDE can be approximated (discretized) to get: f(x,y) = g(x,y) + [f(x+1,y) + f(x,y+1) + f(x-1,y) + f(x,y-1) - 4f(x,y)] for all (x,y) (Linear System)

Consider
$$\left[E_{\text{discrete}}(f) = \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - g(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} [(f(x+1,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x+1,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x+1) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y+1) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y+1) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} \sum_{y=1}^{N} (f(x,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} \sum_{y=1}^{N} (f(x,y) - f(x,y))^2 + \sum_{x=1}^{N} \sum_{y=1}^{N} \sum_{y=1}^{N}$$

Remark:

- · Solving f = g + Af is equivalent to energy minimization
- The first term in Ediscretc is called the fidelity term. Aim to find f that is close to g.
- · The second term is called the regularization term. Aim to enhance Smoothness.
- · Vf+f=g can also be solved in the frequency domain = $DFT(f) = DFT(g + \Delta f)$ $\therefore DFT(f)(u,v) = DFT(g)(u,v) + cDFT(p)(u,v)DFT(f)(u,v)$ $\iff DFT(f)(u,v) = \left[\frac{1}{1-c} DFT(p)(u,v)\right] DFT(g)(u,v)$ L'inverse DFT f(x,y) !!

2D integration by part formula
Let
$$f: [a,b] \times [a,b] \rightarrow IR$$
 and $g: [a,b] \times [a,b] \rightarrow IR$.
Assume $f(a,y) = f(b,y) = f(x,a) = f(x,b) = 0$.
 $g(a,y) = g(b,y) = g(x,a) = g(x,b) = 0$.
Then: $\int_{a}^{b} \int_{a}^{b} \nabla f(x,y) \cdot \nabla g(x,y) \, dx \, dy = -\int_{a}^{b} \int_{a}^{b} \Delta f(x,y) g(x,y) \, dx \, dy$
Proof: $\int_{a}^{b} \int_{a}^{b} \frac{\partial f}{\partial x} \frac{\partial g}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial g}{\partial y} \, dx \, dy = -\int_{a}^{b} \int_{a}^{b} \left(\frac{\partial^{2} f}{\partial x^{2}}\right) g \, dx \, dy + \int_{a}^{b} \left(\frac{\partial f}{\partial x}\right) g \Big|_{x=a}^{x=b} \partial g \, dx \, dy$
 $= -\int_{a}^{b} \int_{a}^{b} \left(\frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y}\right) g \, dx \, dy$
 $A = -\int_{a}^{b} \int_{a}^{b} \left(\frac{\partial^{2} f}{\partial x^{2}} + \frac{\partial^{2} f}{\partial y}\right) g \, dx \, dy$

Also $\int_{a}^{b} \int_{a}^{b} \left(k(x,y) \nabla f(x,y) \right) \cdot \nabla g(x,y) \, dx \, dy = - \int_{a}^{b} \int_{a}^{b} \nabla \cdot \left(k(x,y) \nabla f(x,y) \right) g(x,y) \, dx \, dy$ Where $K: [a,b] \times [a,b] \rightarrow IR$. $\frac{\text{divergence}}{\nabla \cdot \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}} = \frac{\partial V_1}{\partial X} + \frac{\partial V_2}{\partial Y}$ Proof: JaJa (K(x,y) $\frac{\partial f}{\partial x} \frac{\partial g}{\partial x} + K(x,y) \frac{\partial f}{\partial y} \frac{\partial g}{\partial y}$) dx dy $= -\int_{a}^{b}\int_{a}^{b} \frac{\partial}{\partial x} \left(k(x_{1}y_{1}) \frac{\partial f}{\partial x} \right) g \, dxdy + \int_{a}^{b} \frac{k(x_{1}y_{2})}{\partial x} \frac{\partial f}{\partial x} g \Big|_{x=a}^{x=b} dy$ $-\int_{a}^{b}\int_{a}^{b} \frac{\partial}{\partial y} \left(k(x_{1}y_{2}) \frac{\partial f}{\partial y} \right) g \, dxdy + \int_{a}^{b} \frac{k(x_{1}y_{2})}{\partial x} \frac{\partial f}{\partial y} g \Big|_{y=a}^{y=b} dx$ $= -\int_{a}^{b}\int_{a}^{1} \left[\frac{\partial}{\partial x}\left(k(x,y)\frac{\partial f}{\partial x}\right) + \frac{\partial}{\partial y}\left(k(x,y)\frac{\partial f}{\partial y}\right)\right] g dx dy$ $\nabla \cdot \left(k(x,y)\nabla f\right)$

Another useful fact: If: $\int_{\Omega} T(x,y) v(x,y) dx dy = 0$ for all v(x,y)then, we can conclude T(x,y) = 0 in Ω

Image denoising by solving PDE (derived from energy minimisation problem)
Consider the harmonic - L2 minimization model:
minimize
$$E(f) = \int_{a}^{b} (f(x,y) - g(x,y))^2 dx dy + \int_{a}^{b} |\nabla f|^2 dx dy$$

(Look for (continuous) image f) Observed Smoothness of f
Assume that $f(x,y) = g(x,y) = 0$ on the boundary of $[a,b] \times [a,b]$.
Suppose f minimizes $E(f)$. Let $v: [a,b] \times [a,b] \rightarrow [R$ such that
 $v(x,y) = 0$ on the boundary of $[a,b] \times [a,b] \rightarrow [R$ such that
 $f^{\varepsilon}(x,y) = 0$ on the boundary of $[a,b] \times [a,b] \rightarrow [R$, which is another image with
 $f^{\varepsilon}(x,y) = 0$ on the boundary of $[a,b] \times [a,b]$.
 $f^{\varepsilon}(x,y) = 0$ on the boundary of $[a,b] \times [a,b]$.

2

12

-

-

Consider
$$S: IR \rightarrow IR$$
 defined by:

$$S(\varepsilon) \stackrel{def}{=} E(f^{\varepsilon}) = E(f + \varepsilon v).$$
Note that $S(o) = E(f) = minimum of E. Thus, S attains its minimum at $\varepsilon = o.$

$$i \cdot \frac{dS}{d\varepsilon}(o) = o.$$
Now, $\frac{d}{d\varepsilon} |_{\varepsilon=o} = \frac{d}{d\varepsilon} |_{\varepsilon=o} E(f + \varepsilon v) = \frac{d}{d\varepsilon} |_{\varepsilon=o} \int_{a}^{b} \int_{a}^{b} 2(f(x,y) + \varepsilon v(x,y) - g(x,y)) \frac{dxdy}{dxdy} = \int_{a}^{b} \int_{a}^{b} 2(f(x,y) + \varepsilon v(x,y) - g(x,y)) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} (2\nabla f \cdot \nabla v' + 2\varepsilon I\nabla v) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2(f(x,y) - g(x,y)) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2(f(x,y) - g(x,y)) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2(f(x,y) - g(x,y)) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2(f(x,y) - g(x,y)) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \cdot \nabla v(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \nabla f(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \nabla f(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \int_{a}^{b} 2\nabla f(x,y) \frac{dxdy}{\varepsilon = o} \int_{a}^{b} \nabla f(x,y$$

$$S'(0) = 0 = 2 \int_{a}^{b} \left(f(x,y) - g(x,y) \right) v(x,y) dx dy + 2 \int_{a}^{b} \left(\frac{2f}{2x} (x,y) \frac{2v}{2x} (x,y) + \frac{2f}{2y} (x,y) \frac{2v}{2y} (x,y) \right) axayfor all $v(x,y)$. $-(x)$
If we can formulate (x) in the form
$$\int_{a}^{b} \int_{a}^{b} T(x,y) v(x,y) = 0 \quad \text{for all } v(x,y),$$

then we can conclude that $T(x,y) = 0$ in $[a,b] \times [a,b]$.
Remark: • First term is in the form $\int_{a}^{b} \int_{a}^{b} T(x,y) v(x,y)$
 $\cdot Second$ term is NDT.
Need to reformulate the second term.
Strategy = integration by part.$$

.

Second term:
$$\int_{a}^{b} \int_{a}^{b} \nabla f(x,y) \nabla (x,y) dx dy = 2 \int_{a}^{b} \int_{a}^{b} \Delta f(x,y) \nabla (x,y) dx dy.$$

All together, we have

$$0 = S'(0) = \int_{a}^{b} \int_{a}^{b} 2 (f(x,y) - g(x,y)) \frac{\nabla (x,y)}{dx dy} - 2 \int_{a}^{b} \int_{a}^{b} \Delta f(x,y) \nabla (x,y) dx dy$$

$$\int_{a}^{b} \int_{a}^{b} (2(f(x,y) - g(x,y)) - 2 \Delta f(x,y)) \nabla (x,y) dx dy = 0 \text{ for}$$

$$All \nabla (x,y).$$

We conclude:

$$2 (f(x,y) - g(x,y)) - 2 \Delta f(x,y) = 0 \text{ for } (x,y) \in [a,b] \times [a,b]$$

$$Or \quad f(x,y) - g(x,y) - \Delta f(x,y) = 0 \text{ (converse of Laplacian maskins !!)}$$

Example: (onsider an image denoising model to find
$$f: \underline{[a,b] \times [a,b]} \rightarrow \mathbb{R}$$

that minimizes:
 $E(f) = \int_{a}^{b} \int_{a}^{b} (f(x,y) - g(x,y))^{2} + \int_{a}^{b} \int_{a}^{b} |\nabla f(x,y)|^{4} dxdy$.
Suppose f minimizes $E(f)$. Assume $f(x,y) = g(x,y) = 0$ for all
 $(x,y) \in DD$. Find a partial differential equation that f must
satisfy.
Solution: Suppose f minimizes $E(f)$. For any $v: D \rightarrow \mathbb{R}$ such
that $v(x,y) = 0$ on $2D$, we have :
 $\int_{a}^{c} \frac{e^{a}}{4} f + \varepsilon v$ is an image with
 $\int_{a}^{c} \frac{e^{a}}{4} f + \varepsilon v(x,y) = 0$ on $2D$.

Consider
$$S: |R \rightarrow |R$$
 where $S(E) \stackrel{def}{=} E(f^{E}) = E(f + E U)$
Then, $S(0) = E(f) = \text{minimum of } E$. Thus, S attains minimum
at $\varepsilon = 0$.
 $\therefore \frac{dS}{d\varepsilon}\Big|_{\varepsilon=0} = 0$ for all $V: D \rightarrow IR$
Now,
 $D = \frac{dS}{d\varepsilon}\Big|_{\varepsilon=0} = \frac{d}{d\varepsilon}\Big|_{\varepsilon}\left(\int (f(x,y) + \varepsilon v(x,y) - g(x,y))^{2} dx dy + \int I \nabla (f + \varepsilon v) (x,y) I^{4} dx dy \right)$
 $\left(I \nabla f + \varepsilon v v\right)^{2} \left(\nabla f + \varepsilon v v\right)^{2} \left(\nabla f + \varepsilon v v\right)^{2} (\nabla f + \varepsilon v v)^{2} \left(\nabla f + \varepsilon v v\right)^{2} (\nabla f + \varepsilon v v)^{2}\right)^{2}$

$$O = \frac{dS}{d\epsilon}(0) = \int_{P} 2\left(f(x,y) + \xi v(x,y) - g(x,y)\right) v(x,y) \Big|_{\epsilon=0} dxdy$$

$$+ \int_{P} 2\left(|\nabla f|^{2} + 2\epsilon \nabla f \cdot \nabla v + \epsilon^{2} |\nabla v|^{2}\right) \left(2 \nabla f \cdot \nabla v + 2\epsilon |\nabla v|^{2}\right) \Big|_{\epsilon=0} dxdy$$

$$\Rightarrow D = \int_{D} 2(f(x,y) - g(x,y)) v(x,y) dxdy + \int_{D} 4\left(|\nabla f|^{2}\right) \nabla f \cdot \nabla v dxdy$$

$$= \int_{D} 2\left(f(x,y) - g(x,y)\right) v(x,y) dxdy - \int_{P} \left(4 \nabla \cdot \left(|\nabla f|^{2} \nabla f\right)(x,y)\right) v(x,y) dxdy$$

-

All together, we have:

$$0 = \int_{D} \left(2(f(x,y) - g(x,y)) - 4 \nabla \cdot \left(1 \nabla f(x,y) \right)^{2} \nabla f(x,y) \right) \nabla (x,y) \, dx \, dy$$
for all $\nabla (x,y)$.

We can conclude that:

1

$$f(x,y) - g(x,y) - 4 \nabla \cdot \left(|\nabla f(x,y)|^2 \nabla f(x,y) \right) = 0 \text{ in } D.$$

$$\left(\text{Partial differential equation} \right)$$

10.

Total variation (TV) denoising (ROF)
Invented by: Rudin, Osher, Fatemi
Motivation: Previous model:
$$S = g + \Delta f$$
. Solve for f from noisy g .
Disadvantage : Smooth out edge.
Modification : $f = g + \nabla \cdot (K \nabla f)$ K is small on edges!!
Goal: Given a noisy image $g(x,y)$, we look for $f(x,y)$ that solves:
 $f = g + \lambda \frac{\partial}{\partial x} \left(\frac{1}{|\nabla f|(x,y)|^2} \frac{\partial f}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{|\nabla f|(x,y)|^2} \frac{\partial f}{\partial y} \right)$ (\neq)
Remark: Problem arises if $|\nabla f(x,y)| = 0$. Take care of it later.
We'll show that (\neq) must be satisfied by a minimizer of:
 $J(f) = \frac{1}{2} \int_{\Omega} (f(x,y) - g(x,y))^2 + \lambda \int_{\Omega} |\nabla f(x,y)| dx dy$
constant parameter >0.

Channel of

$$\frac{Same idea:}{\Xi} \left[\text{Let } S(\varepsilon) \coloneqq E(f + \varepsilon v) \\ = \int_{\Omega}^{I} (f + \varepsilon v - g)^{2} + \lambda \int_{\Omega} \left[\nabla f + \varepsilon \nabla v \right] \\ (\nabla f + \varepsilon \nabla v) \cdot (\nabla f + \varepsilon \nabla v) \\ = \int_{\Omega} (f + \varepsilon v - g) \nabla + \lambda \int_{\Omega} \frac{\nabla f \cdot \nabla v + 2\varepsilon \nabla v \cdot \nabla v}{\sqrt{(\nabla f + \varepsilon \nabla v)} \cdot (\nabla f + \varepsilon \nabla v)} \right]$$

$$If f \text{ is a minimizer, } \frac{d}{d\varepsilon} \left[\sum_{\varepsilon=0}^{S(\varepsilon)} = 0 \quad \text{for all } v \\ \vdots \quad S'(o) = 0 = \int_{\Omega} (f - g) v + \lambda \int_{\Omega} \frac{\nabla f \cdot \nabla v}{1 \nabla f 1} \\ = \int_{\Omega} (f - g) v - \lambda \int_{\Omega} \nabla \cdot \left(\frac{\nabla f}{1 \nabla f 1} \right) v + \lambda \int_{\partial \Omega} \left(\frac{\nabla f}{1 \nabla f 1} \cdot \vec{n} \right) v \quad \text{for all } v$$

 \sim

We conclude : $(f - g) - \lambda \nabla \cdot \left(\frac{\nabla f}{|\nabla f|}\right) = 0!!$

CONTRACTOR AND

In the discrete case,

$$J(f) = \frac{1}{2} \sum_{x=1}^{N} \sum_{y=1}^{N} (f(x,y) - g(x,y))^2 + \lambda \sum_{x=1}^{N} \sum_{y=1}^{N} \sqrt{(f(x+1,y) - f(x,y))^2 + (f(x,y+1) - f(x,y))^2}$$

$$J \text{ can be regarded as a multi-variable function depending on :}$$

$$f(1, 0), f(1,2), \dots, f(1, N), f(2, 0), \dots, f(2, N), \dots, f(2, N), \dots, f(N, N).$$

If f is a minimizer, then $\frac{\partial J}{\partial f(x, y)} = 0$ for all (x, y) .

2

12

-

$$\begin{split} \overbrace{\partial f(x,y)}^{\partial J} &= (f(x,y) - g(x,y)) + \lambda \frac{2(f(x+1,y) - f(x,y))(-1) + 2(f(x,y+1) - f(x,y))(-1)}{2\sqrt{(f(x+1,y) - f(x,y))^2} + (f(x,y+1) - f(x,y))^2} \\ &+ \lambda \frac{2(f(x,y) - f(x-1,y))}{2\sqrt{(f(x,y) - f(x-1,y))^2} + (f(x-1,y+1) - f(x-1,y))^2} \\ &+ \lambda \frac{2(f(x,y) - f(x,y-1))}{2\sqrt{(f(x+1,y-1) - f(x,y-1))^2} + (f(x,y) - f(x,y-1))^2} = 0 \end{split}$$

By simplification :

$$\begin{aligned} f(x,y) - g(x,y) &= \lambda \left\{ \frac{f(x+1,y) - f(x,y)}{\sqrt{(f(x+1,y) - f(x,y))^2 + (f(x,y+1) - f(x,y))^2}} \\ &- \frac{f(x,y) - f(x-1,y)}{\sqrt{(f(x,y) - f(x-1,y))^2 + (f(x-1,y+1) - f(x-1,y))^2}} \right\} \\ &+ \lambda \left\{ \frac{f(x,y+1) - f(x,y)}{\sqrt{(f(x+1,y) - f(x,y))^2 + (f(x,y+1) - f(x,y))^2}} \\ &- \frac{f(x,y) - f(x,y-1)}{\sqrt{(f(x+1,y-1) - f(x,y-1))^2 + (f(x,y) - f(x,y-1))^2}} \right\} \end{aligned}$$

æ

Discretization of $f - g = \lambda \nabla \cdot \left(\frac{\nabla f}{|\nabla f|}\right)$

and the second second

Gradient descent algorithm Let $f \ \mathbb{R}^n \to \mathbb{R}$ We want to find a sequence $\vec{x}_0 \in \mathbb{R}^n$, $\vec{x}_1 \in \mathbb{R}^n$, $\vec{x}_n \in \mathbb{R}^n$, such that $f(\vec{x}_0) \ge f(\vec{x}_1) \ge \ge f(\vec{x}_n) \ge f(\vec{x}_{n+1}) \ge$ So, Xo, Xi, , Xn, iteratively minimizes f(x) Given \overline{X}_0 , we want to find $\overline{X}_1 = \overline{X}_0 + t\overline{V}$ $(t > 0, \overline{V} \in \mathbb{R}^n)$ such that $f(\vec{x}_1) \leq f(\vec{x}_0)$ Note that $f(\vec{x}_{i}) = f(\vec{x}_{i} + t\vec{v}) \approx f(\vec{x}_{i}) + t \nabla f(\vec{x}_{i}) \vec{v} + \frac{t}{2} \vec{v} \vec{v} \vec{f}'(\vec{x}_{i}) \vec{v} +$ (negluble) Choose v = - vf(xo) Then $f(\vec{x}_{0}) \simeq f(\vec{x}_{0}) - t | \nabla f(\vec{x}_{0})|^{2} \leq f(\vec{x}_{0})$ Similarly, given Xn, choose V = - Vf(Xn) Let Xn+1 = Xn+tV = Xn+t Vf(Xn) Then for small t >0, we have $f(\vec{x}_{n+1}) \approx f(\vec{x}_n) - t |\nabla f(\vec{x}_n)|^2 \leq f(\vec{x}_n)$

Therefore, we have an iterative scheme

$$\vec{X}_{n+1} = \vec{X}_n + t \vec{V}_n$$
, where $\vec{V}_n = -\nabla f(\vec{X}_n)$

tro is small, called the time step Vn E IRⁿ is called the descent direction at nth iteration

How to minimise
$$J(f)$$

We consider the problem of finding f that minimizes $J(f)$.
In the discrete case, J depends on $f(x,y)$ for $x=1,2,...,N$
Our goal is to find a sequence of images
 $f^{\circ}, f', f', ..., f^{\circ}, f^{\circ n'}$, Such that $J(f_{0}) \ge J(f_{1}) \ge \mathbb{I}(f_{0}) \ge J(f_{0}) \ge J(f_{$

-

In the discrete case,

$$\frac{\overline{f^{n+1}} - \overline{f^n}}{\Delta t} = -\nabla J(f^n) \quad (\text{Gradient descent algorithm})$$

For the ROF model:

$$\begin{aligned} \frac{f^{n+1}(x,y) - f^n(x,y)}{\Delta t} \\ &= -(f^n(x,y) - g(x,y)) + \lambda \frac{f^n(x+1,y) - f^n(x,y)}{\sqrt{(f^n(x+1,y) - f^n(x,y))^2 + (f^n(x,y+1) - f^n(x,y))^2}} \\ &- \lambda \frac{f^n(x,y) - f^n(x-1,y)}{\sqrt{(f^n(x,y) - f^n(x-1,y))^2 + (f^n(x-1,y+1) - f^n(x-1,y))^2}} \\ &- \lambda \frac{f^n(x,y+1) - f^n(x,y)}{\sqrt{(f^n(x+1,y) - f^n(x,y))^2 + (f^n(x,y+1) - f^n(x,y))^2}} \\ &- \lambda \frac{f^n(x,y) - f^n(x,y-1)}{\sqrt{(f^n(x+1,y-1) - f^n(x,y-1))^2 + (f^n(x,y) - f^n(x,y-1))^2}} \\ &\quad \text{(Gradient descent algorithm for ROF)} \end{aligned}$$