Lecture 12:
Image denoising using energy minimization
Let g be a noisy image corrupted by additive noise n.
Then: $g(x, y)=\underbrace{f(x, y)}_{\text {Clean image }}+\underbrace{n(x, y)}_{\text {noise }}$
Recall: Laplacian masking: $g=f-\Delta f$ (Obtain a sharp image from a smooth image)
Conversely, to get a smooth image f from a non-smooth image g, we can solve the PDE for $f:-\Delta f+f=g$

We will now that solving the above equation is equivalent to minimizing something :

$$
E(f)=\iint(f(x, y)-g(x, y))^{2} d x d y+\iint\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} d x d y
$$

In the discrete case, the PDE can be approximated (discretized) to get:

$$
f(x, y)=g(x, y)+[f(x+1, y)+f(x, y+1)+f(x-1, y)+f(x, y-1)-4 f(x, y)]
$$

for all (x, y) (Linear System)

Consider: $E_{\text {discrete }}(f)=\sum_{x=1}^{N} \sum_{y=1}^{N}(f(x, y)-g(x, y))^{2}+\sum_{x=1}^{N} \sum_{y=1}^{N}\left[(f(x+1, y)-f(x, y))^{2}+\right.$

$$
\begin{aligned}
& \frac{\partial E_{\text {discrete }}}{\partial f(x, y)}=0 . \\
& \backslash 2(f(x, y)-g(x, y))+2(f(x+1, y)-f(x, y))(-1)+2(f(x, y+1)-f(x, y))(-1) \\
& \quad+2(f(x, y)-f(x-1, y))+2(f(x, y)-f(x, y-1))
\end{aligned}
$$

By simplification, we get:

$$
f(x, y)=g(x, y)+[f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1)-4 f(x, y)]
$$

The continuous version of Ediscrete can be written as:

$$
E(f)=\iint(f(x, y)-g(x, y))^{2}+\iint\left[\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right] d x d y
$$

Remark:

- Solving $f=g+\Delta f$ is equivalent to energy minimization
- The first term in Ediscretc is called the fidelity term.

Ain to find f that is close to g.

- The second term is called the regularization term. A in to enhance Smoothness.
- $-\nabla f+f=g$ can also be solved in the frequency domain =

$$
\begin{aligned}
& \operatorname{DF} T(f)=\operatorname{DF} T(g+\underbrace{\Delta f}_{p * f}) \\
\therefore & \operatorname{DF} T(f)(u, v)=\operatorname{DFT}(g)(u, v)+\operatorname{cDFT}(p)(u, v) \operatorname{DF} T(f)(u, v) \\
\Leftrightarrow & \operatorname{DF} T(f)(u, v)=\left[\frac{1}{1-c \operatorname{DFT}(p)(u, v)}\right] \operatorname{DFT}(g)(u, v) \\
& (\text { inverse } \operatorname{DFT} \\
& f(x, y)!!
\end{aligned}
$$

2D integration by part formula
Let $f:[a, b] \times[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \times[a, b] \rightarrow \mathbb{R}$.
Assume $\quad f(a, y)=f(b, y)=f(x, a)=f(x, b)=0$.

$$
g(a, y)=g(b, y)=g(x, a)=g(x, b)=0 .
$$

Then: $\int_{a}^{b} \int_{a}^{b} \nabla f(x, y) \cdot \nabla g(x, y) d x d y=-\int_{a}^{b} \int_{a}^{b} \Delta f(x, y) g(x, y) d x d y$
Proof:

$$
\begin{aligned}
\int_{a}^{b} \int_{a}^{b} \underbrace{\frac{\partial f}{\partial x} \frac{\partial g}{\partial x}+\frac{\partial f}{\partial y} \frac{\partial g}{\partial y} d x d y}_{\nabla f \cdot \nabla g} & =-\int_{a}^{b} \int_{a}^{b}\left(\frac{\partial^{2} f}{\partial x^{2}}\right) g d x d y+\left.\int_{a}^{b}\left(\frac{\partial f}{\partial x}\right)^{b} g\right|_{x=a} ^{x=b} d y \\
& -\int_{a}^{b} \int_{a}^{b}\left(\frac{\partial^{2} f}{\partial y^{2}}\right) g d x d y+\left.\int_{a}^{b} \frac{\partial f}{\partial y} g\right|_{y=a} ^{2} d x \\
& =-\int_{a}^{b} \int_{a}^{b} \underbrace{\left(\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}\right.}_{\Delta f}) g d x d y
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \text { Also, } \\
& \int_{a}^{b} \int_{a}^{b}(k(x, y) \nabla f(x, y)) \cdot \nabla g(x, y) d x d y=-\int_{a}^{b} \int_{a}^{b} \underbrace{\nabla \cdot(k(x, y) \nabla f(x, y)) g(x, y) d x d y}_{\text {divergence }} \begin{array}{ll}
\text { where } k:[a, b] \times[a, b] \rightarrow \mathbb{R} . & \nabla \cdot\binom{v_{1}}{V_{2}}=\frac{\partial V_{1}}{\partial x}+\frac{\partial V_{2}}{\partial y} \\
\text { Proof: } \int^{b} & d x d y
\end{array}
\end{aligned}
$$

$$
\text { Of: } \begin{aligned}
& \int_{a}^{b} \int_{a}^{b}\left[k(x, y) \frac{\partial f}{\partial x} \frac{\partial g}{\partial x}+k(x, y) \frac{\partial f}{\partial y} \frac{\partial g}{\partial y}\right] d x d y \\
= & -\int_{a}^{b} \int_{a}^{b} \frac{\partial}{\partial x}\left(k(x, y) \frac{\partial f}{\partial x}\right) g d x d y+\left.\int_{a}^{b} k(x, y) \frac{\partial f}{\partial x} g\right|_{x=a} ^{x=b} d y \\
- & \int_{a}^{b} \int_{a}^{b} \frac{\partial}{\partial y}\left(k(x, y) \frac{\partial f}{\partial y}\right) g d x d y+\left.\int_{a}^{b} k(x, y) \frac{\partial f}{\partial y} g\right|_{y=a} ^{y=b} d x \\
= & -\int_{a}^{b} \int_{a}^{b} \frac{\left[\frac{\partial}{\partial x}\left(k(x, y) \frac{\partial f}{\partial x}\right)+\frac{\partial}{\partial y}\left(k(x, y) \frac{\partial f}{\partial y}\right)\right]}{\nabla \cdot(k(x, y) \nabla f)} g d x d y
\end{aligned}
$$

Another useful fact:
If:

$$
\int_{\Omega} T(x, y) v(x, y) d x d y=0 \text { for all } v(x, y)
$$

then, we can conclude $T(x, y)=0$ in Ω

Image denoising by solving PDE (derived from energy minimisation problem) Consider the harmonic -L2 minimization model:

$$
\text { (Look for (continuous) } \begin{gathered}
\text { image domain } \\
\text { image }
\end{gathered} \text {) Observed }
$$

smoothness of f
Assume that $f(x, y)=g(x, y)=0$ on the boundary of $[a, b] \times[a, b]$.
Suppose f minimizes $E(f)$. Let $v:[a, b] \times[a, b] \rightarrow \mathbb{R}$ such that $v(x, y)=0$ on the boundary of $[a, b] \times[a, b]$.
Consider $f^{\varepsilon}=f+\varepsilon v:[a, b] \times[a, b] \rightarrow \mathbb{R}$, which is another image with $f^{\varepsilon}(x, y)=0$ on the boundary of $[a, b] \times[a, b]$.

$$
\begin{aligned}
& x, y)=0 \text { on the boundary } \\
& f^{\varepsilon}(x, y)=f(x, y)+\varepsilon v(x, y)=0 \text { on } \partial([a, b] \times[a, b]) \text {. } \\
& 0
\end{aligned}
$$

Consider $S: \mathbb{R} \rightarrow \mathbb{R}$ defined by:

$$
S(\varepsilon) \stackrel{\operatorname{def}}{=} E\left(f^{\varepsilon}\right)=E(f+\varepsilon v)
$$

Note that $S(0)=E(f)=$ minimum of E. Thus, S attains its minimum at $\varepsilon=0$.

$$
\therefore \frac{d s}{d \varepsilon}(0)=0
$$

Now, $\left.\quad \frac{d}{d \varepsilon}\right|_{\varepsilon=0} S(\varepsilon)=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} E(f+\varepsilon v)=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(\int_{a}^{b} \int_{a}^{b}(f(x, y)+\varepsilon v(x, y)-g(x, y))^{2} d x d y\right.$

$$
\begin{array}{ll}
=\left.\int_{a}^{b} \int_{a}^{b} 2(f(x, y)+\varepsilon v(x, y)-g(x, y)) v(x, y)\right|_{\varepsilon=0} ^{d x d y} & (\nabla f+\varepsilon \nabla v) \cdot(\nabla f+\varepsilon \nabla v) \\
+\left.\int_{a}^{b} \int_{a}^{b}\left(2 \nabla f \cdot \nabla v+2 \varepsilon|\nabla v|^{2}\right)\right|_{\varepsilon=0} d x d y & \nabla f \cdot \nabla f+2 \varepsilon \nabla f \cdot \nabla v+\varepsilon^{2} \nabla v \cdot \nabla v \\
=\int_{a}^{b} \int_{a}^{b} 2(f(x, y)-g(x, y)) v(x, y)+\int_{a}^{b} \int_{a}^{b} 2 \nabla f(x, y) \cdot \nabla v(x, y) d x d y
\end{array}
$$

$$
\begin{equation*}
\therefore S^{\prime}(0)=0=2 \int_{a}^{b} \int_{a}^{b}(f(x, y)-g(x, y)) v(x, y) d x d y+2 \int_{a}^{b} \int_{a}^{b}\left(\frac{\partial f}{\partial x}(x, y) \frac{\partial v}{\partial x}(x, y)+\frac{\partial f}{\partial y}(x, y) \frac{\partial v}{\partial y}(x, y)\right) d x d y \tag{x,y}
\end{equation*}
$$

If we can formulate ($*$) in the form:

$$
\int_{a}^{b} \int_{a}^{b} T(x, y) v(x, y)=0 \text { for all } v(x, y)
$$

then we can conclude that $T(x, y)=0$ in $[a, b] \times[a, b]$.
Remark: First term is in the form $\int_{a}^{b} \int_{a}^{b} T(x, y) v(x, y)$

- Second term is NOT.

Need to reformulate the second term.
Strategy - integration by part.

Second term: $\int_{a}^{b} \int_{a}^{b} \nabla f(x, y) \nabla v(x, y) d x d y=z \int_{a}^{b} \int_{a}^{b} \Delta f(x, y) v(x, y) d x d y$.
All together, we have

$$
\begin{array}{r}
0=s^{\prime}(0)=\int_{a}^{b} \int_{a}^{b} 2(f(x, y)-g(x, y)) v(x, y)-2 \int_{a}^{b} \int_{a}^{b} \Delta f(x, y) v(x, y) d x d y \\
\therefore \int_{a}^{b} \int_{a}^{\downarrow}(2(f(x, y)-g(x, y))-2 \Delta f(x, y)) v(x, y) d x d y=0 \text { for } \\
\text { all } v(x, y) .
\end{array}
$$

We conclude:

$$
\begin{aligned}
& 2(f(x, y)-g(x, y))-2 \Delta f(x, y)=0 \text { for }(x, y) \in \\
& {[a, b] \times[a, b] }
\end{aligned}
$$

or $\quad f(x, y)-g(x, y)-\Delta f(x, y)=0$ (converse of Laplacian masking !!)

Example: Consider an image denoising model to find $f: \frac{[a, b] \times[a, b]}{D} \rightarrow \mathbb{R}$ that minimizes:

$$
E(f)=\int_{a}^{b} \int_{a}^{b}(f(x, y)-g(x, y))^{2}+\left.\int_{a x d y}^{b} \int_{a}^{b} 1 \nabla f(x, y)\right|^{4} d x d y
$$

Suppose f minimizes $E(f)$. Assume $f(x, y)=g(x, y)=0$ for all $(x, y) \in \partial D$. Find a partial differential equation that f must Satisfy.
Solution: Suppose f minimizes $E(f)$. For any $v: D \rightarrow \mathbb{R}$ such that $v(x, y)=0$ on ∂D, we have:

$$
\left\{\begin{array}{l}
f^{\varepsilon} \stackrel{\text { def }}{=} f+\varepsilon v \text { is an image with } \\
f^{\varepsilon}(x, y)=f(x, y)+\varepsilon v(x, y)=0 \text { on } \partial D .
\end{array}\right.
$$

Consider $\delta: \mathbb{R} \rightarrow \mathbb{R}$ where $s(\varepsilon) \stackrel{\text { def }}{=} E\left(f^{\varepsilon}\right)=E(f+\varepsilon v)$
Then, $S(0)=E(f)=$ minimum of E. Thus, S attains minimum at $\varepsilon=0$.

$$
\left.\therefore \frac{d S}{d \varepsilon}\right|_{\varepsilon=0}=0 \text { for all } v: D \rightarrow \mathbb{R}
$$

Now,

$$
\begin{aligned}
& 0=\left.\frac{d s}{d \varepsilon}\right|_{\varepsilon=0}=\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0}\left(\int_{D}(f(x, y)+\varepsilon v(x, y)-g(x, y))^{2} d x d y\right. \\
&+\int_{D} \begin{aligned}
& \left.|\nabla(f+\varepsilon v)(x, y)|^{4} d x d y\right) \\
& \left(|\nabla f+\varepsilon \nabla v|^{2}\right)^{2} \\
& ((\nabla f+\varepsilon \nabla v) \cdot(\nabla f+\varepsilon \nabla v))^{2} \\
& (1 \prime \prime \\
& \left(\nabla f \cdot \nabla f+2 \varepsilon \nabla f \cdot \nabla v+\varepsilon^{2} \nabla v \cdot \nabla v\right)^{2} \\
& \left(|\nabla f|^{2}+2 \varepsilon \nabla f \cdot \nabla v+\varepsilon^{2}|\nabla v|^{2}\right)^{2}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\therefore 0= & \frac{d S}{d \varepsilon}(0)=\left.\int_{D} 2(f(x, y)+\varepsilon v(x, y)-g(x, y)) v(x, y)\right|_{\varepsilon=0} d x d y \\
& +\left.\int_{D} 2\left(|\nabla f|^{2}+2 \varepsilon \nabla f \cdot \nabla v+\varepsilon^{2}|\nabla v|^{2}\right)\left(2 \nabla f \cdot \nabla v+2 \varepsilon|\nabla v|^{2}\right)\right|_{\varepsilon=0} \\
\Rightarrow 0= & \int_{D} 2(f(x, y)-g(x, y)) v(x, y) d x d y+\int_{D} 4\left(|\nabla f|^{2}\right) \nabla f \cdot \nabla v d x d y \\
= & \int_{D} 2(f(x, y)-g(x, y)) v(x, y) d x d y-\int_{D}\left(4 \nabla \cdot\left(|\nabla f|^{2} \nabla f\right)(x, y)\right) v(x, y) d x d y
\end{aligned}
$$

All together, we have:

$$
\begin{array}{r}
0=\int_{D}\left(2(f(x, y)-g(x, y))-4 \nabla \cdot\left(|\nabla f(x, y)|^{2} \nabla f(x, y)\right)\right) v(x, y) d x d y \\
\text { for all } v(x, y)
\end{array}
$$

We can conclude that:

$$
f(x, y)-g(x, y)-4 \nabla \cdot\left(|\nabla f(x, y)|^{2} \nabla f(x, y)\right)=0 \quad \text { in } D
$$

(Partial differential equation)

Total variation (TV) denoising (ROF)
Invented by: Rudin, Usher, Fatemi
Motivation: Previous model: $f=g+\Delta f$. Solve for f from noisy g.
Disadvantage: Smooth out edge.
Modification : $f=g+\nabla \cdot(k \nabla f) \quad K$ is small on edges!!
Goal: Given a noisy image $g(x, y)$, we look for $f(x, y)$ that solves:

$$
\begin{equation*}
f=g+\lambda \frac{\partial}{\partial x}\left(\frac{1}{|\nabla f|(x, y)} \frac{\partial f}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{1}{|\nabla f|(x, y)} \frac{\partial f}{\partial y}\right) \tag{*}
\end{equation*}
$$

Remark: Problem arises if $|\nabla f(x, y)|=0$. Take care of it later.
We'll show that (*) must be satisfied by a minimizer of:

$$
J(f)=\frac{1}{2} \int_{\Omega}(f(x, y)-g(x, y))^{2}+\underbrace{}_{\Omega}|\nabla f(x, y)| d x d y
$$

constant parameter >0.

Same idea: Let $S(\varepsilon):=E(f+\varepsilon v)$

$$
\begin{aligned}
& \text { Dame idea: Let } \quad=\frac{1}{2} \int_{\Omega}(f+\varepsilon v-g)^{2}+\lambda \int_{\Omega} \underbrace{|\nabla f+\varepsilon \nabla v|} \\
& \frac{d}{d \varepsilon} s(\varepsilon)=\left[\int_{\Omega}(f+\varepsilon v-g) v+\lambda \int_{\Omega} \frac{\nabla f \cdot \nabla v+2 \varepsilon \nabla v \cdot \nabla v}{\sqrt{(\nabla f+\varepsilon \nabla v) \cdot(\nabla f+\varepsilon \nabla v)}}\right]
\end{aligned}
$$

If f is a minimizer, $\left.\frac{d}{d \varepsilon}\right|_{\varepsilon=0} S(\varepsilon)=0$ for all v.

$$
\begin{aligned}
\therefore s^{\prime}(0)=0 & =\int_{\Omega}(f-g) v+\lambda \int_{\Omega} \frac{\nabla f \cdot \nabla v}{|\nabla f|} \\
& =\int_{\Omega}(f-g) v-\lambda \int_{\Omega} \nabla \cdot\left(\frac{\nabla f}{|\nabla f|}\right) v+\lambda \int_{\partial \Omega}\left(\frac{\nabla f}{|\nabla f|} \cdot \vec{n}\right) v \\
& =\int_{\Omega}\left[(f-g)-\lambda \nabla \cdot\left(\frac{\nabla f}{|\nabla f|}\right)\right] v+\lambda \int_{\partial \Omega}\left(\frac{\nabla f}{|\nabla f|} \cdot \vec{n}\right) v \quad \text { for all } v
\end{aligned}
$$

We conclude: $(f-g)-\lambda \nabla \cdot\left(\frac{\nabla f}{|\nabla f|}\right)=0!!$

In the discrete case,

$$
J(f)=\frac{1}{2} \sum_{x=1}^{N} \sum_{y=1}^{N}(f(x, y)-g(x, y))^{2}+\lambda \sum_{x=1}^{N} \sum_{y=1}^{N} \sqrt{(f(x+1, y)-f(x, y))^{2}+(f(x, y+1)-f(x, y))^{2}}
$$

J can be regarded as a multi-variable function depending on: $f(1,1), f(1,2), \ldots, f(1, N), f(2,1), \ldots, f(2, N), \ldots, f(N, N)$.
If f is a minimizer, then $\frac{\partial J}{\partial f(x, y)}=0$ for all (x, y).

$$
\begin{aligned}
\frac{\partial J}{\partial f(x, y)} & =(f(x, y)-g(x, y))+\lambda \frac{2(f(x+1, y)-f(x, y))(-1)+2(f(x, y+1)-f(x, y))(-1)}{2 \sqrt{(f(x+1, y)-f(x, y))^{2}+(f(x, y+1)-f(x, y))^{2}}} \\
& +\lambda \frac{2(f(x, y)-f(x-1, y))}{2 \sqrt{(f(x, y)-f(x-1, y))^{2}+(f(x-1, y+1)-f(x-1, y))^{2}}} \\
& +\lambda \frac{2(f(x, y)-f(x, y-1))}{2 \sqrt{(f(x+1, y-1)-f(x, y-1))^{2}+(f(x, y)-f(x, y-1))^{2}}}=0
\end{aligned}
$$

By simplification:

$$
\begin{aligned}
f(x, y)-g(x, y) & =\lambda\left\{\frac{f(x+1, y)-f(x, y)}{\sqrt{(f(x+1, y)-f(x, y))^{2}+(f(x, y+1)-f(x, y))^{2}}}\right. \\
& \left.-\frac{f(x, y)-f(x-1, y)}{\sqrt{(f(x, y)-f(x-1, y))^{2}+(f(x-1, y+1)-f(x-1, y))^{2}}}\right\} \\
& +\lambda\left\{\frac{f(x, y+1)-f(x, y)}{\sqrt{(f(x+1, y)-f(x, y))^{2}+(f(x, y+1)-f(x, y))^{2}}}\right. \\
& \left.-\frac{f(x, y)-f(x, y-1)}{\sqrt{(f(x+1, y-1)-f(x, y-1))^{2}+(f(x, y)-f(x, y-1))^{2}}}\right\}
\end{aligned}
$$

Discretization of $f-g=\lambda \nabla \cdot\left(\frac{\nabla f}{|\nabla f|}\right)$

Gradient descent algorithm
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We want to find a sequence $\vec{x}_{0} \in \mathbb{R}^{n}, \vec{x}_{1} \in \mathbb{R}^{n}, \ldots, \vec{x}_{n} \in \mathbb{R}^{n}$, such that $f\left(\vec{x}_{0}\right) \geqslant f\left(\vec{x}_{1}\right) \geqslant \ldots \geqslant f\left(\vec{x}_{n}\right) \geqslant f\left(\vec{x}_{n+1}\right) \geqslant \ldots$
So, $\vec{x}_{0}, \vec{x}_{1}, \ldots, \vec{x}_{n}, \ldots$ iteratively minimizes $f(\vec{x})$.
Given \vec{x}_{0}, we want to find $\vec{x}_{1}=\vec{x}_{0}+t \vec{v} \quad\left(t>0, \vec{v} \in \mathbb{R}^{n}\right)$ such that

$$
f\left(\vec{x}_{1}\right) \leqslant f\left(\vec{x}_{0}\right) .
$$

Note that: $f\left(\vec{x}_{1}\right)=f\left(\vec{x}_{0}+t \vec{v}\right) \simeq f\left(\vec{x}_{0}\right)+t \nabla f\left(\vec{x}_{0}\right) \cdot \vec{v}+\frac{t^{2}}{2!} \vec{v}^{\top} f^{\prime \prime}\left(\vec{x}_{0}\right) \vec{v}+\ldots$
Choose $\vec{v}=-\nabla f\left(\vec{x}_{0}\right)$. Then: (neglible)

$$
f\left(\vec{x}_{1}\right) \simeq f\left(\vec{x}_{0}\right)-t\left|\nabla f\left(\vec{x}_{0}\right)\right|^{2} \leqslant f\left(\vec{x}_{0}\right)
$$

Similarly, given \vec{x}_{n}, choose $\vec{v}=-\nabla f\left(\vec{x}_{n}\right)$. Let $\vec{x}_{n+1}=\vec{x}_{n}+t \vec{v}=\vec{x}_{n}+t \nabla f\left(\vec{x}_{n}\right)$.
Then: for small $t>0$, we have

$$
f\left(\vec{x}_{n+1}\right) \approx f\left(\vec{x}_{n}\right)-t\left|\nabla f\left(\vec{x}_{n}\right)\right|^{2} \leqslant f\left(\vec{x}_{n}\right)
$$

Therefore, we have an iterative scheme:

$$
\vec{x}_{n+1}=\vec{x}_{n}+t \vec{v}_{n} \text {, where } \vec{v}_{n}=-\nabla f\left(\vec{x}_{n}\right)
$$

$t>0$ is small, called the time step.
$\vec{V}_{n} \in \mathbb{R}^{n}$ is called the descent direction at $n^{\text {th }}$ iteration.

How to minimise $J(f)$
We consider the problem of finding f that minimizes $J(f)$.
In the discrete case, J depends on $f(x, y)$ for $\begin{aligned} & x=1,2, \ldots, N \\ & y=1,2, \ldots, N\end{aligned}$.
Our goal is to find a sequence of images:
$f^{0}, f^{1}, f^{2}, \ldots, f^{n}, f^{n+1}, \ldots$ such that $J\left(f_{0}\right) \geqslant J\left(f_{1}\right) \geqslant \ldots \geqslant J\left(f_{n}\right) \geqslant J\left(f_{n+1}\right) \geqslant$.

where $\vec{v}_{n}=-\nabla J\left(f^{n}\right)$.
Here, $\overrightarrow{f^{n}}$ is the vectorized image of f^{n}.

$$
\begin{aligned}
& \text { Then: } \\
& J\left(\overrightarrow{f^{n+1}}\right)=J\left(\overrightarrow{f^{n}}+\Delta t \vec{v}_{n}\right) \approx J\left(\frac{\left.\overrightarrow{f^{n}}\right)+\Delta t \nabla J\left(f^{n}\right) \cdot \vec{v}_{n}=J\left(\vec{f}^{n}\right)-\Delta t\left|\nabla J\left(f^{n}\right)\right|^{2} \leqslant J\left(\overrightarrow{f^{n}}\right)}{} .\right.
\end{aligned}
$$

In the discrete case,

$$
\frac{\overrightarrow{f^{n+1}}-\overrightarrow{f^{n}}}{\Delta t}=-\nabla J\left(f^{n}\right) \quad \text { (Gradient descent algorithm) }
$$

For the ROF model:

$$
\begin{aligned}
& \frac{f^{n+1}(x, y)-f^{n}(x, y)}{\Delta t} \\
& =-\left(f^{n}(x, y)-g(x, y)\right)+\lambda \frac{f^{n}(x+1, y)-f^{n}(x, y)}{\sqrt{\left(f^{n}(x+1, y)-f^{n}(x, y)\right)^{2}+\left(f^{n}(x, y+1)-f^{n}(x, y)\right)^{2}}} \\
& -\lambda \frac{f^{n}(x, y)-f^{n}(x-1, y)}{\sqrt{\left(f^{n}(x, y)-f^{n}(x-1, y)\right)^{2}+\left(f^{n}(x-1, y+1)-f^{n}(x-1, y)\right)^{2}}} \quad \text { Discretization of } \\
& +\lambda \frac{f^{n}(x, y+1)-f^{n}(x, y)}{\sqrt{\left(f^{n}(x+1, y)-f^{n}(x, y)\right)^{2}+\left(f^{n}(x, y+1)-f^{n}(x, y)\right)^{2}}} \\
& -\lambda \frac{f^{n}(x, y)-f^{n}(x, y-1)}{\sqrt{\left(f^{n}(x+1, y-1)-f^{n}(x, y-1)\right)^{2}+\left(f^{n}(x, y)-f^{n}(x, y-1)\right)^{2}}}
\end{aligned}
$$

(Gradient descent algorithm for ROF)

