Lecture 1:
Image transformation
Let $I=$ collection of images of size N and range of intensity $[0, M]$.

$$
=\left\{f \in M_{N \times N}(\mathbb{R}): 0 \leqslant f(i, j) \leqslant M ; 1 \leqslant i, j \leqslant N\right\}
$$

(for simplicity, assume f is a square image; can be general $N_{1} \times N_{2}$ image)
Remark: - Images are matrices (mathematically)

- For the ease of discussion, we assume $I=M_{N \times N}(\mathbb{R})$ (collection of all $N \times N$ real matrices)

Image transformation $=\mathcal{O}: I \rightarrow I$ (transform one image to another)

Image processing v.s. Image Transformation
Let g be a "bad" image, which is a distorted version of a good (clean) image f. Then: we can write $g=O(f)$, where $\left(O: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N}(\mathbb{R})\right.$ transforms one image to another.
To solve the imaging problem:
(1) Design a suitable $T: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N}(\mathbb{R})$ such that:

$$
\left.T(g)=f \quad \text { (i.e. } T \approx O^{-1}\right)
$$

(2) Design mathematical method to solve:

$$
g=O(\underbrace{f}_{\text {unknown }}) \quad \begin{gathered}
\left.\begin{array}{c}
G i v e n ~ \\
\text { the unknown } f
\end{array}\right)
\end{gathered}
$$

Definition: (Linear image transformation)
An image transformation $\theta: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N}(\mathbb{R})$ is linear if it satisfies: $\theta(a f+b g)=a \theta(f)+b \theta(g)$ for all $f, g \in M_{N \times N}(\mathbb{R}), a, b \in \mathbb{R}$.
Examples: - Given $A \in M_{N \times N}(\mathbb{R})$. Define: $\left.\theta: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N} \mid \mathbb{R}\right)$ by: $O(f)=2 f+A f$ for all $f \in M_{N \times N}(\mathbb{R})$.
Then: \mathcal{O} is linear.

- Given $A, B \in M_{N \times N}(\mathbb{R})$. Define \mathcal{O} by: $\theta(f)=A f B$ for all $f \in M_{N \times N}(\mathbb{R})$. O is linear
- Given $A \in M_{N \times N}(\mathbb{R})$. Define \mathcal{O} by:

$$
O(f)=f A f \text { is } \theta \text { linear?? }
$$

Point Spread Function
Take $f \in I=M_{N \times N}(\mathbb{R})$.
Let $f=\left(\begin{array}{ccc}f(1,1) & \cdots & f(1, N) \\ f(2,1) & & f(2, N) \\ \vdots & f(x, y) & \vdots \\ f(N, 1) & \cdots & f(N, N)\end{array}\right)=\sum_{x=1}^{N} \sum_{y=1}^{N}\left(\begin{array}{ccccc}0 & \cdots & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & f(x, y) & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0\end{array}\right)=\sum_{x=1}^{N} \sum_{y=1}^{N} f(x, y)\left(\begin{array}{cccc}0 & \cdots & 0 & \cdots \\ \vdots & 0 \\ \vdots & \cdots & 1 & 1 \\ \vdots & \cdots & 0 \\ 0 & \cdots & \vdots \\ 0 & \cdots & \vdots\end{array}\right)$
Consider a linear image transformation $\theta: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N}(\mathbb{R})$.
Let $g=0(f)$. Then:

$$
\begin{aligned}
& g(\alpha, \beta)=\left[\sum_{x=1}^{N} \sum_{y=1}^{N} f(x, y) \quad \theta\left(\left(\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 1 & \cdots & 0 \\
\vdots & \cdots & \vdots & \cdots & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right)\right]_{\alpha, \beta}\right. \\
& =\sum_{x=1}^{N} \sum_{y=1}^{N} f(x, y) h^{\alpha, \beta}(x, y) \\
& h^{\alpha, \beta}(x, y)=\left[\left(O\left(P_{x y}\right)\right]_{\alpha, \beta} ; P_{x y}=\left(\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 1 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right) \leftarrow x^{\text {th }}\right.
\end{aligned}
$$

Remark: $\quad h^{\alpha, \beta}(x, y)$ determines how much the pixel value of f at (x, y) influences the pixel value of g at (α, β).

Definition: (Point spread function)
$h^{\alpha, \beta}(x, y)$ is usually called the point spread function (PSF)

Example: Let $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$. Define: $\theta: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by:
$O(f)=A f$ for all $f \in M_{2 \times 2}(\mathbb{R})$.
Consider: $f=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then: $f=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+d\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
Then:

$$
\begin{aligned}
& g=\theta(f)=a\left(\theta\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right)+b \theta\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)+c \theta\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right)+d \theta\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)\right. \\
& =a\left(\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right)+b\left(\begin{array}{ll}
0 & 1 \\
0 & 2
\end{array}\right)+c\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)+d\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Separable linear image transformation
Definition: A_{n} image transformation $\theta: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N}(\mathbb{R})$ is said to be separable if there exists matrices $A \in M_{N \times N}(\mathbb{R})$ and $B \in M_{N \times N}(\mathbb{R})$ such that: $U(f)=A f B$ for all $f \in M_{N \times N}(\mathbb{R})$.

Example:

$$
\text { - } \begin{aligned}
O(f) & =\alpha f \quad \text { for } \quad \alpha \in \mathbb{R} \\
& =(\alpha I) f(I)
\end{aligned}
$$

- Discrete Fourier Transform is separable
- Discrete Haar Wavelet Transform is Separable.

Remark: Separable image transformation is linear.

Theorem: Let \mathcal{O} be a separable image transformation given by: $\Theta(f)=A f B$ for all $f \in M_{N \times N}(\mathbb{R})$, where $A, B \in M_{N \times N}(\mathbb{R})$. Then, the point spread function of \mathcal{O} is given by:

$$
h^{\alpha, \beta}(x, y)=A(\alpha, x) B(y, \beta)
$$

where $A(\alpha, x)$ is the (α, x) entry of $A, B(y, \beta)$ is the (y, β) entry of B.
Proof: Let $g=U(f)=A f B$. Then, the (α, β) entry of g is given by: $g(\alpha, \beta)=\sum_{x=1}^{N} A(\alpha, x)(f B)(x, \beta)$

$$
\begin{aligned}
& A_{\|}(g B)(\alpha, \beta) \\
& =\sum_{x=1}^{N} A(\alpha, x) \sum_{y=1}^{N} f(x, y) B(y, \beta) \\
& \left(\begin{array}{c}
(9 B)(1, \beta) \\
(9 B)(\alpha, \beta) \\
\vdots \\
\left(\sin \left(y^{2},()\right)\right.
\end{array}\right)=\sum_{x=1}^{N} \sum_{y=1}^{N} A(\alpha, x) B(y, \beta) \quad f(x, y) \\
& h^{\alpha, \beta^{\prime \prime}}(x, y)
\end{aligned}
$$

