
Lecture 11:

Recall : DFT of DFT of
f N

· Mathematical formulation of image blur :

↑ 1

g = f x h + n = G = FOH + N
-

- -

Lt L DFT of

Blurry original
noise DFT of

h
image image g

· Direct inverse filtering : Tu = A synt (Replacing CH by H)

(Boast up noise)

· Modified inverse filtering :

B(u, v) =

y
and T(u,) = Hi



thosWienerFittera where Secu , = INCU)
Sf(n ,

y = 1 F(u
,
u

If Su(n, v) and Sf(u, u) are not known
,

then we let k =
to get :

T(n , v)=
+ k

Let Fu, = TUG,
. Compute FCX, Y = inverse DFT of FLU

,
VS



Constrained least square problem:

Method4 : Constrained least square filtering

Goal : Consider a least square minimization model.

Let g = h + f + n

A ↑ noise

degradation
-

In matrix form
, g

=DJ + n
x

N2
X

1

S(g) I (f) (n)
j

,
F , EIR

,
DEMN

- transformation matrix of h*f
Stacked image of g (orf)

-

Given J ,
we need to find an estimation of I such that it minimizes:

E(5)= Af(x
,
y subject to the constraint :

11 - DJI = E



What is

Remark:

Af?

In the discrete case
,

we can estimate :

Af(x, y) = f(x + 1
, y) + f(x, y + 1) + f(x + 1

, y) + f(x , y - 1) - 4f(X ,Y)

i- A is the Laplacian in the discrete case

More generally, Af = p * F = discrete convolution

where

↳ = (0 , o



Let *f = 5(p + 5) = L]
- transformation matrix representing the convolution

Then : ECF) = (LJ)T(LJ) with p.

We will prove :

Theorem: The constrained least square problem has the optimal solution

in the spatial domain that satisfies :

(P ↑D + 8LTL)J =

p
+ +

I

for some suitable parameter U.

In the frequency domain,

# (n ,
v) : = DFT(f)(n,) = t UlPGC ,

us

(H = DFT(h) ; G(u) = DFT(g) ; P(u ,
) = DFTLp) where

p = 10, S



mark

:ConstrainedeastsquareFilterin
a

-

Let F(u
,
) = T(u,

2) G(u,
u)

Compute Inverse DFT of (U ,
2).



Howabout in the frequency (Fourier) domain ?

-toimportanttheorems
e

a linear transformation defined by :

O(f) = k * f for all fEMXN(IRI ,
where

KEMXN(IR).

Let DEM(IR) be the transformation matrix representing O.

That is, S(O(f)) = D3 (f). EIR2
Here

,
8 is the stacking operator .

SCI) is the vectorized image of I

(Is/ cot of I becomes first n entries of SLI)
,

2nd col of I becomes

second n entries of S(I), . . . , etc)



Theorem1 : Let = DFT(R) .

Then :

D = W -

ADWT and DT = WADW +
where C

1

transfmatrix
rep .

RA < (0 , 0)
(1 , 02

2nd colof

& I becomes2nd
1st col -

.. diagonal entries

pa of I becomes
I (N- 1

,
0) -- = I ISt n diagona

entries
I LO, )

...I &(N- 1
, 1)

...

& (O
,

N - 1) I& :

(N+,NT
#

mn

for W = WNQWH where W = e
-2π) &t = wa Wat water M (C)



Example: Let O(f) = R * f where K = DFT(R) = (a(2)↑

M2x2

Let DEM4xx(IR) be the transformation matrix of 0,

Then :

D = WAW
+
where 1 =

A

C
o

!) o "d I
and W = W20Wn (Wu =( )

=

(EE I



Theorem2 : Let W =W EMNX

Let f = (fmn)o < m , n = N+
EMNXN(IR)

,

Consider S(f) = JE IR*:

:

= =NE
Then :

I FIN, I where F = DFT(f(

E,,3
-



Example: Assume that :

-

G
-

G



-

-

= 32 (0 , 0G
2

=3G (1,0

!

G = DFT(g)

i
.
w
+

j = 35(G)



Suppose D is the transformation matrix representing the convolution with h.

(In other words, if g = hxf
,
then : =Dr

N MNxN
Let H = DFT(h) EMXN

mi of HINONEa) I

-
StackH to form the diagonal matrix.



Suppose L is the transformation matrix representing the convolution with p.

(In other words, if g = xf , then : = L IN
N MNXN

Let P = DFT(PL EMNxN
Diagonalization of :

I =NXPLOGOINP INTERIP(N+, 1)12

-
Stack P to form the diagonal matrix.



Combining these information and substitute into the "governing" equation :

(D D + OLTL)] =

D
+

,

We get : · o
& &

i'v
(H10 , 0)P+ U /P10 , 03

IH(1 , 0)(+ U(P (1 , 03
-

..

N4 I INNOPINON.
NFLOTFIL ...FIN

... /No)I



Combining all these
,
we get for every (u , U,

=

s
=

-
Summar Constrained least square filtering minimizes :

E(J) = (LJ)
+

(L=)

subject to the constraint that :

1 I = E

Callow fixed amount of noise)



Imagesharpening in the frequency domain

Goal : Enhance image so that it shows more obvious edges.

Method1 : Laplacian masking
Recall that : Af(X , y) = of + ofn
In the discrete case

, Af(x , y) =
f(x + 1

,
y) + f(x, y+ 1) + f(x, y

-1) + f(x+1 , y) - 4f(x, Y)

or Af = P * 5 Where p = ) 1 - )
We can observe that -Af captures the edges of the image

add more edges) leaving other region zero)
-

i . Shapen image = F + 1-Af) px f
/I

In the frequency domain : DFT(g) = DFT(f) - DFT(Af)
= DFT(f) - CDFT (p) .ODFT(f)

i
. DFT(g) (n ,2) = (1 - Heaplacian (2, vi] DFT(f) ( U, ~

c"DFT (p)



Method2 : Unsharp masking
Idea : Add high-frequency component

Definition: Let f = input image (blurry

Let fsmooth = Smoother image

Define a sharper image as :

g(x , y) = f(x , y) + k)f(x, y)
- -smooth(x , 2)

When k= 1
,
the method is called unsharp masking,

When h > 1
,
the method is called highboost filtering.

In the frequency domain , let DFT(fsmooth) (n , r) = <(n, v) DFT (f) (U
, vs

-

Low-pass Filter

Then : DFT(g) = [ 1 + <1- Hip(n , r)] DFT(f) cu, v)



Imagedenoising in the spatial domain

Definition: Linear filter = modify pixel value by a linear combination of

Pixel values of local neighbourhood .

&

⑳



Geometric illustration



Commonlyused filter (linear)

&



Remark: Convolution of Gaussian with a Gaussian is also a Gaussian

i
. Successive Gaussian filter = Gaussian filter with larger 8

.



Non-linear spatial filter
-

#

#



F

↑
-



Image denoising using energy minimization
-

Let g be a noisy image corrupted by additive noise n.

Then : g( , y) = x
, y) +n, y), (assume 1 Ex

, Y < N)
Clean image

noise

(non-smooth
Recall : Laplacian masking : g = f-Af (Obtain a sharp image from

a smooth image)
Conversely , to get a smooth image f from a non-smooth image g,

we can solve the PDE for f : - of + f = 9
& -

unknown known

We will show that solving the above equation is equivalent to

minimizing something :

E(f) = S)(f(x , y) - g(x,y)) axdy + J)(2) + 10) axy



In the discrete case
,
the PDE can be approximated /discretized) to get :

f(x
, y) = g(x, y) + [f(x + 1

, y) + f(x, y + 1) + f(x - 1 , 3) + f(x, y - 1)
- 4f(x , y)]

for all (
, y) for all 13,



Consider : Ediscrete(f) = -E-fu e
Suppose f is a minimizer of Ediscrete

.

Then
,
for each (x , y),

Ediscrete depends on f(x
, y) for each (x,y

Ediscret-

By simplification , we get :

f(x
, y) = g(x, y) + ( f(x+ 1

, y) + f(x - 1 , y) + f(x , y +1) + f(x , y
- 1) - 4f(x, y)]

The continuous version of Ediscrete can be written as :

Elf) =S)(f(x , y) - g(x, y))) +JS())+ Lyndy or


