Lecture 11:
Recall:

- Mathematical formulation of image blur:

$$
\begin{aligned}
& \text { l formulation of image blur : } \\
& \qquad \underbrace{f * h}_{\substack{g \\
\text { Blurry } \\
\text { image } \\
\text { original } \\
\text { image }}}+\underbrace{n}_{\text {noise }} \Rightarrow \underbrace{G}_{\text {DFT of }}=c F \odot \underbrace{G}_{g} \underset{\substack{\text { DFT of } \\
h}}{H}+N
\end{aligned}
$$

- Direct inverse filtering: $T(u, v)=\frac{1}{H(u, v)+\varepsilon \operatorname{sgn}(H(u, v))}$ (Replacing $c H$ by H) (Boast up noise)
- Modified inverse filtering:

$$
B(u, v)=\frac{1}{1+\left(\frac{u^{2}+v^{2}}{D^{2}}\right)^{n}} \text { and } T(u, v)=\frac{B(u, v)}{H(u, v)+\varepsilon \operatorname{sgn}(H(u, v)} \text {. }
$$

Method 3: Wiener fitter
Let $T(u, v)=\frac{\overline{H(u, v)}}{|H(u, v)|^{2}+\frac{S_{n}(u, v)}{S_{f}(u, v)}}$ where $\quad \begin{aligned} & S_{n}(u, v)=\mid N\left(u,\left.v\right|^{2}\right. \\ & S_{f}(u, v)=\mid F\left(u,\left.v\right|^{2}\right.\end{aligned}$

$$
S_{f}(u, v)=|F(u, v)|_{S}^{2}
$$

If $S_{n}(u, v)$ and $S_{f}(u, v)$ are not known, then we let $K=\frac{S_{n}(u, v)}{S_{f}(u, v)}$ to get:

$$
T(u, v)=\frac{\overline{H(u, v)}}{|H(u, v)|^{2}+k}
$$

Let $\hat{F}(u, v)=T(u, v) G(u, v)$. Compute $\hat{f}(x, y)=$ inverse DFT of $\hat{F}(u, v)$.

Method 4: Constrained least square filtering
Goal: Consider a least square minimization model.
Let $g=\underset{\substack{\text { degradation }}}{h * f+n_{\text {noise }}}$
In matrix form, $\vec{g}=D \vec{f}_{n}+\vec{n}_{n}$

$$
\begin{aligned}
& \vec{g}=D \vec{f}+\vec{n}_{"} \quad \vec{g}, \vec{f}, \vec{n} \in \mathbb{R}^{N^{2}}, \quad D \in M_{N^{2} \times N^{2}} \\
& \mathcal{S}_{\text {" }}(g) \quad \begin{array}{l}
\text { gl) } \\
\text { ge of } g(n) \\
\text { transformation matrix of } h * f
\end{array}
\end{aligned}
$$

Stacked image of g (or)
$\underline{\text { Constrained least square problem: }}$
Given \vec{g}, we need to find an estimation of \vec{f} such that it minimizes:

$$
\begin{gathered}
E(f)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}|\Delta f(x, y)|^{2} \text { subject to the constraint: } \\
\|\vec{g}-D \vec{f}\|^{2}=\varepsilon
\end{gathered}
$$

What is Δf ?
In the discrete case, we can estimate:

$$
\Delta f(x, y) \approx f(x+1, y)+f(x, y+1)+f(x-1, y)+f(x, y-1)-4 f(x, y)
$$

\therefore A is the Laplacian in the discrete case

Remark:
More generally, $\Delta f=p * f \longleftarrow$ discrete convolution
where

$$
p=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & 1 & -4 \\
\hline & \vdots \\
0 & 1 & 0 \\
y=0 & y=0
\end{array}\right) x=0
$$

Let $\overrightarrow{p * f}=S(p * f)=L \vec{f}$
Then: $E(\vec{f})=(L \vec{f})^{\top}(L \vec{f})$ transformation matrix representing the convolution with p.

We will prove:
Theorem: The constrained least square problem has the optimal solution in the spatial domain that satisfies:

$$
\left(D^{\top} D+\gamma L^{\top} L\right) \vec{f}=D_{V}^{\top} \vec{g}
$$

for some suitable parameter γ.
In the frequency domain,

$$
\begin{gathered}
\hat{F}(u, v):=\operatorname{DFT}(f)(u, v)=\frac{1}{N^{2}} \frac{H(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}} G(u, v) \\
(H=\operatorname{DFT}(h) ; \quad G(u, v)=\operatorname{DFT}(g) ; P(u, v)=\operatorname{DFT}(p) \text { where } \\
\left.p=\left(\begin{array}{ccc}
0 & \ddots & 0 \\
\vdots & 1 & -4 \\
0 & 1 & \vdots \\
0 & \cdots & 0
\end{array}\right)\right)
\end{gathered}
$$

Remark: Constrained least square filtering:

$$
\begin{aligned}
& T(u, v)=\frac{1}{N^{2}} \frac{H(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}} \\
& \text { Let } \widetilde{F}(u, v)=T(u, v) G(u, v)
\end{aligned}
$$

Compute Inverse DFT of $\widetilde{F}(u, v)$.

How about in the frequency (Fourier) domain?
Two important theorems
Notation: Let θ be a linear transformation defined by: $O(f)=k * f$ for $a l l \quad f \in M_{N X N}(\mathbb{R})$, where $k \in \operatorname{MnXN}(\mathbb{R})$.
Let $D \in M_{N^{2} \times N^{2}}(\mathbb{R})$ be the transformation matrix representing 0 .
That is, $\quad \rho(O(f))=D \rho(f)$.
Here, ρ is the stacking operator. $\rho(I)$ is the vectorized image of I ($|s|$ col of I becomes first n entries of $\rho(I)$, and col of I becomes second n entries of $\rho(I), \ldots$, etc)

Theorem 1: Let $K=D F T(k)$. Then:

$$
D=W \Lambda_{D} W^{-1} \text { and } D^{\top}=W \bar{\Lambda}_{D} W^{-1} \quad \text { where }
$$

transf matrix

$$
\text { rep. } k^{*} / \int_{\text {lstcot }}^{K(0,0)} \underline{K}(1,0)
$$

and col of IK becomes $2^{\text {nd }}$

$$
\Lambda_{D}=N^{2} \begin{aligned}
& \text { of } K \text { beconox } \\
& \text { list } n \text { diagond } \\
& \text { entries }
\end{aligned} \quad I K(N-1,0)
$$

$$
K(0,1)
$$

diagonal entries

$$
K(0, N-1)
$$

for $W=W_{N} \otimes W_{N} \quad$ where $\quad W_{N}=\left(\frac{1}{\sqrt{N}} e^{\frac{2 \pi j}{N} m n}\right)_{0 \leq m, n \leq N-1} \in M_{N \times N}(\mathbb{C})$

$$
W^{-1}=W_{M}^{-1} \otimes W_{M}^{-1} \quad W_{M}^{-1}\left(\frac{1}{\sqrt{N}} e^{-\frac{2 \pi j m_{n}}{1}}\right)
$$

Example: Let $\theta(f)=\underset{\substack{M_{2 \times 2}}}{k} * f$ where $K=\operatorname{DFT}(k)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Let $D \in M_{4 \times 4}(\mathbb{R})$ be the transformation matrix of \mathcal{O}.
Then:

$$
\begin{aligned}
& \left.D=W \Lambda_{0} W^{-1} \text { where } \Lambda_{D}=\left(\begin{array}{ccc}
a & & 0 \\
& c & 0 \\
0 & b & \\
& & \\
& & \\
& & \\
& (1 / \sqrt{2})
\end{array}\right) . \begin{array}{l}
1 / \sqrt{2} \\
\hline
\end{array}\right)
\end{aligned}
$$

and $W=W_{2} \otimes W_{2} \quad\left(W_{2}=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right)\right)$

$$
=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right) & \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) & -\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
\end{array}\right)
$$

Theorem 2: Let $W=W_{N} \otimes W_{N} \in M_{N^{2} \times N^{2} \text {. }}^{\text {Th er }}$
Let $f=\left(f_{m n}\right)_{0 \leq m, n \leq N-1} \in M_{N X N}(\mathbb{R})$. Consider $\rho(f)=\vec{f} \in \mathbb{R}^{N^{2}}$.
Then:

$$
\left.W^{-1} \vec{f}=N\left(\begin{array}{c}
F(0,0) \\
F(1,0) \\
\vdots \\
F(N-1,0) \\
F(0,1) \\
F(1,1) \\
\vdots \\
F(N-1,1) \\
\vdots \\
F(0, N-1) \\
F(1, N-1) \\
\vdots \\
F(N-1, N-1)
\end{array}\right)\right\} \begin{gathered}
\text { st col } \\
\text { of } F \\
\text { and } \operatorname{col} \\
\text { of } F
\end{gathered} \quad \text { where } \quad F=\operatorname{Not} \cot \text { of } F \quad(f)
$$

Example: Assume that:

$$
G=\left(\begin{array}{lll}
g_{00} & g_{01} & g_{02} \\
g_{10} & g_{11} & g_{12} \\
g_{20} & g_{21} & g_{22}
\end{array}\right) \quad \text { and } \quad W_{3}^{-1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \exp \left(-\frac{2 \pi j}{3}\right) & \exp \left(-\frac{2 \pi j}{3} 2\right) \\
1 & \exp \left(-\frac{2 \pi j}{3} 2\right) & \exp \left(-\frac{2 \pi j}{3}\right)
\end{array}\right)
$$

Then:
$\therefore W^{-1} \vec{g}=3 \rho(G)$

Suppose D is the transformation matrix representing the convolution with h.

Let $H=\operatorname{DFT}(h) \in M_{N \times N}$
Diagonalization of D :

Stack H to form the diagonal matrix.

Suppose L is the transformation matrix representing the convolution with p. (In other words, if $g=p * f$, then: $\begin{aligned} & \vec{g}=L \vec{f} \\ & \underset{\mathbb{R}^{N^{2}}}{ } M_{N^{2} * N^{2}}\end{aligned}$

Let $P=\operatorname{DFT}(p) \in M_{N \times N}$

$$
\begin{aligned}
& \text { Diagonalization of } L \text { : }
\end{aligned}
$$

Stack P to form the diagonal matrix.

Combining these information and substitute into the "governing" equation:

$$
\left(D^{\top} D+\gamma L^{\top} L\right) \stackrel{\rightharpoonup}{f}=D^{\top} \stackrel{\rightharpoonup}{g}
$$

We get: $W\left(\Lambda_{\mathrm{D}}^{*} \Lambda_{\mathrm{D}}+\gamma \Lambda_{L}^{*} \Lambda_{L}\right) W^{-1} \vec{f}=W \Lambda_{\mathrm{D}}^{*} W^{-1} \vec{g}$

$$
\begin{aligned}
& \therefore|H(0,0)|^{2}+\gamma|P(0,0)|^{2} \\
& |H(1,0)|^{2}+\gamma|P(1,0)|^{2} \\
& |H(N-1,0)|^{2}+\left.\gamma P(N-1,0)\right|^{2} \\
& N^{2}\left(\begin{array}{lll}
\overline{H(0,0)} & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right.
\end{aligned}
$$

Combining all these, we get for every (u, v),

$$
\begin{aligned}
& N^{4}\left[|H(u, v)|^{2}+\gamma|\mathbb{P}(u, v)|^{2}\right] N F(u, v)=N^{2} \overline{H(u, v)} N G(u, v) \\
& \Rightarrow N^{2} \frac{|H(u, v)|^{2}+\gamma|\mathbb{P}(u, v)|^{2}}{\overline{H(u, v)}} F(u, v)=G(u, v)
\end{aligned}
$$

Summary: Constrained least square filtering minimizes:

$$
E(\vec{f})=(L \vec{f})^{\top}(L \vec{f})
$$

Subject to the constraint that:

$$
\|\underbrace{\stackrel{\rightharpoonup}{g}-H \vec{f}}_{\vec{n}}\|^{2}=\varepsilon
$$

(allow fixed amount of noise)

Image sharpening is the frequency domain
Goal: Enhance image so that it shows more obvious edges.
Method 1: Laplacian masking
Recall that: $\Delta f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$.
In the discrete case, $\Delta f(x, y) \approx f(x+1, y)+f(x, y+1)+f(x, y-1)+f(x-1, y)-4 f(x, y)$

$$
\text { or } \Delta f \approx p * f \text { where } p=\left(\begin{array}{cc}
1 \\
1 & -4 \\
1 & 1
\end{array}\right)
$$

We can observe that $-\Delta f$ captures the edges of the image add more edges (leaving other region zero)

$$
\therefore \text { Shapen image }=f+\overbrace{(-\Delta f)}^{\text {ada }}
$$

In the frequency domain:

$$
\begin{aligned}
\operatorname{DFT}(g) & =\operatorname{DFT}(f)-\operatorname{DFT}(\Delta f) \\
& =\operatorname{DF} T(f)-c \operatorname{DF} T(p) \odot \operatorname{DF} T(f)
\end{aligned}
$$

$$
\therefore \operatorname{DFT}(g)(u, v)=\left[1-H_{\text {laplacian }}(u, v)\right] \operatorname{DFT}(f)(u, v)
$$

"̈DFT(p)

Method 2: Unsharp masking
Idea: Add high-frequency component
Definition: Let $f=$ input image (blurry)
Let $f_{\text {smooth }}=$ smoother $^{\text {image }}$
Define a sharper image as:

$$
g(x, y)=f(x, y)+k\left(f(x, y)-f_{\text {smooth }}(x, y)\right)
$$

When $k=1$, the method is called unsharp masking.
When $k>1$, the method is called highboost filtering.
In the frequency domain, let $\operatorname{DF} T\left(f_{\text {smooth }}\right)(u, v)=\underbrace{H_{L p}}_{\text {Low-pass filter }}(u, v) \operatorname{DF} T(f)(u, v)$

$$
\text { Then: } \operatorname{DFT}(g)=\left[1+k\left(1-H_{L P}(u, v)\right] \operatorname{DFT}(f)(u, v)\right.
$$

Image denoising in the spatial domain
Definition: Linear filter = modify pixel value by a linear combination of pixel values of local neighbourhood.

Example 1: Let f be an $N \times N$ image. Extend the image periodically. Modify f to \tilde{f} by:

$$
\tilde{f}(x, y)=f(x, y)+3 f(x-1, y)+2 f(x+1, y) .
$$

This is a linear filter.
Example 2: Define

$$
\tilde{f}(x, y)=\frac{1}{4}(f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1))
$$

This is also a linear filter.

Recall: The discrete convolution is defined as:

$$
I * H(u, v)=\sum_{m=-M}^{M} \sum_{n=-N}^{N} I(u-m, v-n) H(m, n)
$$

(Linear combination of pixel values around (u, v))
Therefore, Linear filter is equivalent to a discrete convolution.

Geometric illustration

(spatial)
(frequency)

Commonly used filter (linear)

$$
\begin{array}{lll}
-1 & 0 & 1
\end{array}
$$

- Mean filter:

$$
H=\frac{1}{9}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \leftarrow-1
$$

(Here, we only write down the entries of the matrix for indices $-1 \leq k, l \leq 1$ for simplicity. All other matrix entries are equal to 0 .)

This is called the mean filtering with window size 3×3.

- Gaussian filter: The entries of H are given by the Gaussian function $g(r)=$ $\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)$, where $r=\sqrt{x^{2}+y^{2}}$.

Properties of linear filtering

- Associativity: $A *(B * C)=(A * B) * C$
- Commutativity: $I * H=H * I$
- Linearity:

$$
\begin{aligned}
(s \cdot I) * H & =I *(s \cdot H)=s \cdot(I * H) \\
\left(I_{1}+I_{2}\right) * H & =\left(I_{1} * H\right)+\left(I_{2} * H\right)
\end{aligned}
$$

Remark: Convolution of Gaussian with a Gaussian is also a Gaussian
\therefore Successive Gaussian filter = Gaussian filter with larger σ.

Non-linear spatial filter

- Median filter

Take a window with center at pixel $\left(x_{0}, y_{0}\right)$. Update the pixel value at $\left(x_{0}, y_{0}\right)$ from $I\left(x_{0}, y_{0}\right)$ to $\tilde{I}\left(x_{0}, y_{0}\right)=\operatorname{median}(I$ within the window $)$

Example 4: If pixel values within a window is $0,0,1,2,3,7,8,9,9$, then the pixel value is updated as 3 (median).

of fixed size

- Step 1: Consider all windows with certain size around pixel (x_{0}, y_{0}) (not necessarily be centered at $\left.\left(x_{0}, y_{0}\right)\right)$;
- Step 2: Select a window with minimal variance;
- Step 3: Do a linear filter (mean filter, Gaussian filter and so on).

Image denoising using energy minimization
Let g be a noisy image corrupted by additive noise n.
Then: $g(x, y)=\underbrace{f(x, y)}_{\text {Clean image }}+\underbrace{n(x, y)}_{\text {noise }}$ (assume $1 \leq x, y \leq N$)
Recall: Laplacian masking: $g=f-\Delta f$ (Obtain a sharp image from a smooth image)
Conversely, to get a smooth image f from a non-smooth image g, we can solve the PDE for $f:-\Delta f+f=g$ unknown known
We will now that solving the above equation is equivalent to minimizing something :

$$
E(f)=\iint(f(x, y)-g(x, y))^{2} d x d y+\iint\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2} d x d y
$$

In the discrete case, the PDE can be approximated (discretized) to get:

$$
f(x, y)=g(x, y)+[f(x+1, y)+f(x, y+1)+f(x-1, y)+f(x, y-1)-4 f(x, y)]
$$

for all (x, y) for all $1 \leq x, y \leq N$

Consider: $E_{\text {discrete }}(f)=\sum_{x=1}^{N} \sum_{y=1}^{N}(f(x, y)-g(x, y))^{2}+\sum_{x=1}^{N} \sum_{y=1}^{N}\left[(f(x+1, y)-f(x, y))^{2}+\right.$
Suppose f is a minimizer of Ediscrete. Then, for each (x, y),

$$
\frac{\partial E_{\text {discrete }}}{\partial f(x, y)}=0
$$

By simplification, we get:

$$
f(x, y)=g(x, y)+[f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1)-4 f(x, y)]
$$

The continuous version of Ediscrete can be written as:

$$
E(f)=\iint(f(x, y)-g(x, y))^{2}+\iint\left[\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right] d x d y
$$

