Lecture 10:

1

2

-

1

Method 3: Wiener filter
Let
$$T(u, v) = \frac{H(u, v)}{|H(u, v)|^2 + \frac{S_n(u, v)}{S_g(u, v)}}$$
 where $S_n(u, v) = |N(u, v)|^2$
If $S_n(u, v)$ and $S_g(u, v)$ are not known, then we let $k = \frac{S_n(u, v)}{S_g(u, v)}$ to get:
 $T(u, v) = \frac{H(u, v)}{|H(u, v)|^2 + k}$
Let $\hat{F}(u, v) = T(u, v) \hat{G}(u, v)$. Compute $\hat{f}(x, y) = inverse DFT of \hat{F}(u, v)$.
In fact, the Wiener filter can be described as an inverse filtering as follows:
 $\hat{F}(u, v) = \left[\left(\frac{1}{|H(u, v)|^2} + k\right)\right] \hat{G}(u, v)$
Behave like "Modified inverse $\hat{f}(u, v) = if(u, v)$ is large (if $(u, v) \neq (o, o)$)
 ≈ 1 if $H(u, v)$ is large (if $(u, v) \approx (o, o)$)

2

-

-

.

What does Wiener filtering do mathematically?
We can show: Wiener filter minimizes the mean square error:

$$E^{2}(f, \hat{f}) = \sum_{x=1}^{\infty} \sum_{y=1}^{\infty} |f(x,y) - \hat{f}(x,y)|^{2}$$
degradation
Observed
Let $\hat{g} = \hat{f} \times \hat{f} + n \xi$ moise
Then, the restored image $\hat{f}(x,y)$ can be written as:
 $\hat{f}(x,y) = W(x,y) * \hat{g}(x,y)$ for some $w(x,y)$
Recall: \hat{f} is obtained as follows
Step 1: Let $\hat{F}(u,v) = \frac{W(u,v)}{Fither} \hat{G}(u,v)$ ($\hat{G}(u,v) = DFT(g)(u,v)$)
Step 2: Compute iFT of \hat{f} to get \hat{f}
 $\hat{f} = cuj * \hat{g}$ for some W . (or $\hat{F} = DFT(\hat{f}) = WOG$)

1

Thus,
$$\hat{f}$$
 denpends on W
We can regard $\mathcal{E}^{2}(\hat{f}, f)$ as a functional depending on W :
 $\mathcal{E}^{2}(\hat{f}, f) = \mathcal{E}^{2}(W)$
We can find an optimal W that minimizes:
 $\mathcal{E}^{2}(W) = \|\hat{f}(W) - f\|_{F}^{2}$
Under Smithble condition (Spatially correlated), the minimizer
 W is given by:
 $W(u,v) = \frac{H(u,v)}{H(u,v)^{2} + \frac{S_{n}(u,v)}{S_{g}(u,v)}}$ where $S_{n}(u,v) = |N(u,v)|^{2}$
 $S_{g}(u,v) = 1F(u,v)^{2}$

Method 4: Constrained least square Siltering
Disadvantages of Wiener's filter:
(1) IN(u,v)|² and IF(u,v)|² must be known/guessed
(2) Constant estimation of ratio is not always suitable
Goal: Consider a least square minimization model.
Let
$$g = f_{x}S + \eta_{x}$$
 noise
In matrix form, $\tilde{g} = D\tilde{f} + \tilde{\eta}$, $\tilde{g}, \tilde{f}, \tilde{\eta} \in IR^{N}$, $D \in M_{N^{2}XN^{2}}$
 $Stacked image of g$, transformation matrix of $h * f$
(or f)

12

Constrained least square problem:

Given \vec{g} , we need to find an estimation of \vec{f} such that it minimizes: $E(f) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} |\Delta f(x,y)|^2 \text{ subject to the constraint :}$ $\|\vec{g} - D\vec{f}\|^2 = \varepsilon$

What is $\triangle f$?

In the discrete case, we can estimate: $\Delta f(x,y) \approx f(x+1,y) + f(x,y+1) + f(x-1,y) + f(x,y-1) - 4f(x,y)$ Taylor expansion: $\frac{2^{2}f(x,y)}{9x^{2}} \approx \frac{f(x+k,y) - 2f(x,y) + f(x-k,y)}{k^{2}} \xrightarrow{Put h=1} \Delta f(x,y) \left(\frac{2^{2}f}{8x^{2}} + \frac{2^{2}f}{8y^{2}}\right)(x,y)$ $\frac{2^{2}f}{9y^{2}}(x,y) \approx \frac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^{2}}$ $\frac{2^{2}f}{9y^{2}}(x,y) \approx \frac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^{2}}$ $\frac{2^{2}f}{y^{2}}(x,y) \approx \frac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^{2}}$ Remark:

• More generally, $\Delta f = p * f \leftarrow discrete convolution$ $where
<math display="block">p = \begin{pmatrix} 0 & --- & 0 \\ \vdots & i & -4 & i \\ 0 & ... & 0 \end{pmatrix} \times = 0$ y = 0

Minimizing ∑ → → 1 △ f(x,y)² is to denoise.
Also, g = Df + n ⇔ g - Df = n ⇒ llg - Dfl=lnli
the constraint llg - Dfll² is to solve noise level the deblowring problem.

$$\frac{M-1}{2} \sum_{x=0}^{N-1} |\Delta f(x,y)|^{2} \qquad \text{Densise}$$

$$\frac{\|\vec{g} - D\vec{f}\|^{2}}{\|\vec{g} - D\vec{f}\|^{2}} = \varepsilon \qquad \text{Deblur}$$

$$\frac{Remark}{\|\vec{g} - D\vec{f}\|^{2}} = \varepsilon \qquad \text{means we Allow some fixed level of noise.}$$

12

Let
$$p \times f = S(p \times S) = \lfloor \overline{S} \\ transformation matrix representing the convolution
Then: $E(\overline{S}) = (L\overline{S})^{T}(L\overline{S})$ with p.
We will prove:
The constrained least square problem has the optimal solution
in the Spatial domain that satisfies.
 $(D^{T}D + YL^{T}L)\overline{S} = D^{T}\overline{S}$
for some suitable parameter Y.
In the frequency domain,
 $\widehat{F}(u, v) := DFT(f)(u, v) = \frac{1}{N^{2}} \frac{H(u, v)}{|H(u, v)|^{2} + Y|P(u, v)|^{2}} G_{1}(u, v)$
 $(H = DFT(\widehat{K}); G_{1}(u, v) = DFT(g); P(u, v) = DFT(p)$ where
 $p = \begin{pmatrix} 0 & \cdots & 0 \\ 0 & \cdots & 0 \end{pmatrix}$$$

<u>Remark</u>: Constrained least square filtering:

$$T(u, v) = \frac{1}{N^2} \frac{H(u, v)}{|H(u, v)|^2 + 8|P(u, v)|^2}$$

Let $\widetilde{F}(u, v) = T(u, v) G(u, v)$
Compute Inverse DFT of $\widetilde{F}(u, v)$

CONTRACTOR AL

2

al game and

onto

That are

Sketch of proof.
Recall: our problem is to minimize:

$$\vec{J}^T L^T L \vec{J}$$
 subject to $\|\vec{g} - D\vec{J}\|^2 = \varepsilon$
 $(\vec{g} - D\vec{J})^T (\vec{g} - D\vec{J})$
From calculus, the minimizer must satisfy:
 $\nabla \mathcal{L} \stackrel{\text{def}}{=} \nabla (\vec{f}^T L^T L \vec{J} + \lambda (\vec{g} - D\vec{f})^T (\vec{g} - D\vec{J})) = 0$ for
where $\vec{J} = (f_1, f_2, ..., f_i, ..., f_{N^2})^T$ and λ is the Lagrange's multiplier.
Have, $\nabla \mathcal{L} = (\frac{\partial \mathcal{L}}{\partial f_1}, \frac{\partial \mathcal{L}}{\partial f_2}, ..., \frac{\partial \mathcal{L}}{\partial f_N})^T$
Easy to check: $\nabla (\vec{f}^T \vec{a}) = \vec{a}$
 $\nabla (\vec{b}^T \vec{f}) = \vec{b}$
 $\nabla (\vec{f}^T A \vec{f}) = (A + A^T)\vec{J}$

 $\vec{f}^{\dagger} \vec{a} = (f_1, f_2, ..., f_n) \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = a_1 f_1 + a_2 f_2 + ... + a_n f_n$ $\frac{\partial \vec{f}^{\dagger} \vec{a}}{\partial f_1} = a_j$ $\vec{v} \begin{pmatrix} \vec{f}^{\dagger} \vec{a} \end{pmatrix} d\theta \begin{pmatrix} \partial \vec{f}^{\dagger} \vec{a} \\ \partial f_1 \end{pmatrix} = \begin{pmatrix} \partial \vec{f}^{\dagger} \vec{a} \\ \partial f_1 \end{pmatrix} = (a_1, a_2, ..., a_n)^{\mathsf{T}}$ etc.

$$\begin{array}{ccc} D = 0 \Rightarrow (2L^{T}L)\vec{j} + \lambda(-D^{T}\vec{g} - D^{T}\vec{g} + 2D^{T}D^{T}\vec{j}) = 0 \\ \Rightarrow (D^{T}D + \lambda L^{T}L)\vec{j} = D^{T}\vec{g} \quad \text{where} \quad \lambda = \frac{1}{\lambda} \quad \text{and} \quad \lambda \text{ is the Lagrange's multiplier.} \\ Parameter \quad \lambda \quad \text{can be determined by direct substitution into the equation:} \\ (\vec{g} - D\vec{s})^{T}(\vec{g} - D\vec{s}) = \varepsilon. \end{array}$$

How about in the frequency (Fourier) domain? I wo important theorems Let O be a linear transformation defined by: Notation: U(f) = K × f for all f ∈ MNXN(IR), where KE MNXN (IR). Let D e M N² × N² (IR) be the transformation matrix representing 0. That is, S(O(f)) = D S(f). $C |R^{N^2}$ Here, S is the stacking operator. S(I) is the vectorized image of I (1s) col of I becomes first a entries of S(I), and col of I becomes Second n entries of S(I), ..., etc)

