Lecture 10:
Recall:

- Mathematical formulation of image blur:

$$
\begin{aligned}
& \text { l formulation of image blur : } \\
& \qquad \underbrace{f * h}_{\substack{g \\
\text { Blurry } \\
\text { image } \\
\text { original } \\
\text { image }}}+\underbrace{n}_{\text {noise }} \Rightarrow \underbrace{G}_{\text {DFT of }}=c F \odot \underbrace{G}_{g} \underset{\substack{\text { DFT of } \\
h}}{H}+N
\end{aligned}
$$

- Direct inverse filtering: $T(u, v)=\frac{1}{H(u, v)+\varepsilon \operatorname{sgn}(H(u, v))}$ (Replacing $c H$ by H) (Boast up noise)
- Modified inverse filtering:

$$
B(u, v)=\frac{1}{1+\left(\frac{u^{2}+v^{2}}{D^{2}}\right)^{n}} \text { and } T(u, v)=\frac{B(u, v)}{H(u, v)+\varepsilon \operatorname{sgn}(H(u, v)} \text {. }
$$

Method 3: Wiener filter
Let $T(u, v)=\frac{\overline{H(u, v)}}{|H(u, v)|^{2}+\frac{S_{n}(u, v)}{S_{f}(u, v)}}$ where $S_{n}(u, v)=\mid N\left(u,\left.v\right|^{2}\right.$
$S_{f}(u, v)=|F(u, v)|^{2}$
If $S_{n}(u, v)$ and $S_{f}(u, v)$ are not known, then we let $K=\frac{S_{n}(u, v)}{S_{f}(u, v)}$ to get:

$$
T(u, v)=\frac{\overline{H(u, v)}}{|H(u, v)|^{2}+k}
$$

Let $\hat{F}(u, v)=T(u, v) G(u, v)$. Compute $\hat{f}(x, y)=$ inverse DFT of $\hat{F}(u, v)$.
In fact, the Wiener filter can be described as an inverse filtering as follows:

$$
\hat{F}(u, v)=\left[\left(\frac{1}{H(u, v)}\right)\left(\frac{|H(u, v)|^{2}}{\mid H\left(u,\left.v\right|^{2}+k\right.}\right)\right] G(u, v)
$$

 from 0)
≈ 1 if $H(u, v)$ is large $($ if $(u, v) \approx(0,0)$)

What does Wiener filtering do mathematically?
We can show: Wiener filter minimizes the mean square error:

$$
\xi^{2}\left(f, \hat{f}_{\uparrow}\right)=\sum_{x=-\frac{N}{2}}^{\text {original Restored }} \sum_{y=-\frac{N}{2}}^{N}|f(x, y)-\hat{f}(x, y)|^{2}
$$

degradation
Observed \downarrow
Let $\partial g=h * f_{\mathbb{R}}+n<$ noise
Then, the restored image $\hat{f}(x, y)$ can be written as:

$$
\hat{f}(x, y)=w(x, y) * g(x, y) \text { for some } w(x, y)
$$

Recall: \hat{f} is obtained as follows
Step 1: Let $\hat{F}(u, v)=\frac{W(u, v)}{\text { Fitter }} G(u, v) \quad(G(u, v)=\operatorname{DF} T(g)(u, v))$
Step 2: Compute iFT of \hat{F} to get \hat{f}

$$
\therefore \hat{f}=c w * g \text { for some } w . \quad \text { (or } \quad \hat{F}=\operatorname{DFT}(\hat{f})=W \bigcirc G \text {) }
$$

Thus, \hat{f} denpends on W
We can regard $\xi^{2}(\hat{f}, f)$ as a functional depending on W :

$$
\xi^{2}(\hat{f}, f)=\xi^{2}(w)
$$

We can find an optimal W that minimizes:

$$
\varepsilon^{2}(w)=\|\hat{f}(w)-f\|_{F}^{2}
$$

Under suitable condition (spatially correlated), the minimizer W is given by:

$$
W(u, v)=\frac{\overline{H(u, v)}}{|H(u, v)|^{2}+\frac{S_{n}(u, v)}{S_{f}(u, v)}} \text { where } \begin{aligned}
& S_{n}(u, v)=|N(u, v)|^{2} \\
& S_{f}(u, v)=|F(u, v)|^{2}
\end{aligned}
$$

Method 4: Constrained least square filtering
Disadvantages of Wiener's fitter:
(1) $|N(u, v)|^{2}$ and $|F(u, v)|^{2}$ must be known/guessed
(2) Constant estimation of ratio is not always suitable Goal: Consider a least square minimization model.
Let $g=\underset{\substack{\text { degradation }}}{h * f+n_{n}}$
In matrix form, $\vec{g}=D \vec{f}_{n}+\vec{n}_{N}$

$$
\begin{aligned}
& \vec{g}=D \vec{f}+\vec{n} \quad \vec{n}_{n} \quad \vec{g}, \vec{f}, \vec{n} \in \mathbb{R}^{N^{2}}, \quad D \in M_{N^{2} \times N^{2}} \\
& \rho(g) \\
& \rho(f) \rho(n) \quad \begin{array}{l}
\text { transformation matrix of } h * f
\end{array}
\end{aligned}
$$

Stacked image of g transformation matrix of $h * f$
(or)

Constrained least square problem:
Given \vec{g}, we need to find an estimation of \vec{f} such that it minimizes:

$$
\begin{array}{r}
E(f)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}|\Delta f(x, y)|^{2} \text { subject to the constraint: } \\
\|\vec{g}-D \vec{f}\|^{2}=\varepsilon
\end{array}
$$

What is Δf ?
In the discrete case, we can estimate:

$$
\Delta f(x, y) \approx f(x+1, y)+f(x, y+1)+f(x-1, y)+f(x, y-1)-4 f(x, y)
$$

Taylor expansion:

$$
\begin{aligned}
& \frac{\partial^{2} f(x, y)}{\partial x^{2}} \approx \frac{f(x+h, y)-2 f(x, y)+f(x-h, y)}{h^{2}} \\
& \frac{\partial^{2} f}{\partial y^{2}}(x, y) \approx \frac{f(x, y+h)-2 f^{2}(x, y)+f(x, y-h)}{h^{2}}
\end{aligned}
$$

C'A is the Laplacian in the discrete case

Remark:

- More generally, $\Delta f=p * f \longleftarrow$ discrete convolution where

$$
p=\left(\begin{array}{ccc}
0 & -- & 0 \\
\vdots & 1 & -4 \\
0 \\
0 & 1 & \vdots \\
y=0 & 0
\end{array}\right) x=0
$$

- Minimizing $\sum_{x=0}^{N-1} \sum_{y=0}^{N-1}|\Delta f(x, y)|^{2}$ is to denoise.
- Also, $\vec{g}=D \vec{f}+\vec{n} \Leftrightarrow \vec{g}-D \vec{f}=\vec{n} \Rightarrow\|\vec{g}-D \vec{f}\|^{2}=\|\vec{n}\|^{2}$

$$
=\varepsilon
$$

\therefore the constraint $\|\vec{g}-D \vec{f}\|^{2}$ is to solve noise level the deblurring problem.

- $\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}|\Delta f(x, y)|^{2} \longleftarrow 0$ Denoise
- $\|\vec{g}-D \vec{f}\|^{2}=\varepsilon \curvearrowright$ Deblur

Remark: $\|\vec{g}-D \vec{f}\|^{2}=\varepsilon$ means we Allow some fixed level of noise.

Let $\overrightarrow{p * f}=S(p * f)=L \vec{f}$
Then: $E(\vec{f})=(L \vec{f})^{\top}(L \vec{f})$ transformation matrix representing the convolution with p.

We will prove:
Theorem: The constrained least square problem has the optimal solution in the spatial domain that satisfies:

$$
\left(D^{\top} D+\gamma L^{\top} L\right) \vec{f}=D_{V}^{\top} \vec{g}
$$

for some suitable parameter γ.
In the frequency domain,

$$
\begin{gathered}
\hat{F}(u, v):=\operatorname{DFT}(f)(u, v)=\frac{1}{N^{2}} \frac{H(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}} G(u, v) \\
(H=\operatorname{DFT}(h) ; \quad G(u, v)=\operatorname{DFT}(g) ; P(u, v)=\operatorname{DFT}(p) \text { where } \\
\left.p=\left(\begin{array}{ccc}
0 & \ddots & 0 \\
\vdots & 1 & -4 \\
0 & 1 & \vdots \\
0 & \cdots & 0
\end{array}\right)\right)
\end{gathered}
$$

Remark: Constrained least square filtering:

$$
\begin{aligned}
& T(u, v)=\frac{1}{N^{2}} \frac{H(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}} \\
& \text { Let } \widetilde{F}(u, v)=T(u, v) G(u, v)
\end{aligned}
$$

Compute Inverse DFT of $\widetilde{F}(u, v)$.

Sketch of proof:
Recall : our problem is to minimize:

$$
\begin{aligned}
\vec{f}^{\top} L^{\top} L \vec{f} \text { subject to } & \|\vec{g}-D \vec{f}\|^{2}=\varepsilon \\
& (\vec{g}-D \vec{f})^{\top}(g-D \vec{f})
\end{aligned}
$$

From calculus, the minimizer must satisfy:

$$
\nabla \mathcal{L} \stackrel{\text { def }}{=} \nabla\left(\vec{f}^{\top} L^{\top} L \vec{f}+\lambda(\vec{g}-D \vec{f})^{\top}(\vec{g}-D \vec{f})\right)=0 \text { for }
$$

where $\vec{f}=\left(f_{1}, f_{2}, \ldots, f_{i}, \ldots, f_{N}\right)^{\top}$ and λ is the Lagrange's multiplier.
Here, $\nabla \mathcal{L}=\left(\frac{\partial \mathcal{L}}{\partial f_{1}}, \frac{\partial \mathcal{L}}{\partial f_{2}}, \ldots, \frac{\partial \mathcal{L}}{\partial f_{N^{2}}}\right)^{\top}$
Easy to check: $\nabla\left(\dot{f}^{\top} \vec{a}\right)=\vec{a}$

- $\nabla\left(\vec{b}^{\top} \vec{f}\right)=\vec{b}$
- $\nabla\left(\vec{f}^{\top} A \vec{f}\right)=\left(A+A^{\top}\right) \vec{f}$

$$
\begin{aligned}
& \vec{f}^{\top} \vec{a}=\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=a_{1} f_{1}+a_{2} f_{2}+\ldots+a_{n} f_{n} \\
& \frac{\partial \vec{f}^{\top-1} a}{\partial f_{j}}=a_{j} \\
\therefore & \nabla\left(\vec{f}^{\top+-} a\right) \frac{\operatorname{def}}{=}\left(\frac{\partial \vec{f}^{\top} \vec{a}}{\partial f_{1}}, \ldots, \frac{\partial \vec{f}^{\top} \vec{a}}{\partial f_{n}}\right)^{\top}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{\top}
\end{aligned}
$$

etc.

$$
\therefore D=0 \Rightarrow\left(2 L^{\top} L\right) \vec{f}+\lambda\left(-D^{\top} \vec{g}-D^{\top} \vec{g}+2 D^{\top} D \vec{f}\right)=0
$$

$\Rightarrow\left(D^{\top} D+\gamma L^{\top} L\right) \vec{f}=D^{\top} \vec{g}$ where $\gamma=\frac{1}{\lambda}$ and λ is the Lagrange's
Parameter γ can be determined by direct substitution into the equatiolier.

$$
(\vec{g}-D \vec{f})^{\top}(\vec{g}-D \vec{f})=\varepsilon
$$

How about in the frequency (Fourier) domain?
Two important theorems
Notation: Let θ be a linear transformation defined by: $O(f)=k * f$ for $a l l \quad f \in M_{N X N}(\mathbb{R})$, where $k \in \operatorname{MnXN}(\mathbb{R})$.
Let $D \in M_{N^{2} \times N^{2}}(\mathbb{R})$ be the transformation matrix representing 0 .
That is, $\quad \rho(O(f))=D \rho(f)$.
Here, ρ is the stacking operator. $\rho(I)$ is the vectorized image of I ($|s|$ col of I becomes first n entries of $\rho(I)$, and col of I becomes second n entries of $\rho(I), \ldots$, etc)

Theorem 1: Let $K=D F T(k)$. Then:

$$
D=W \Lambda_{D} W^{-1} \text { and } D^{\top}=W \bar{\Lambda}_{D} W^{-1} \quad \text { where. }
$$

for $W=W_{N} \otimes W_{N} \quad$ where $\quad W_{N}=\left(\frac{1}{\sqrt{N}} e^{\frac{2 \pi j}{N} m n}\right)_{0 \leq m, n \leq N-1} \in M_{N \times N}(\mathbb{C})$

