MMAT 5390: Mathematical Image Processing Assignment 2

Due: February 26, 2024

Please give reasons in your solutions.

1. Consider a real $M \times N$ matrix A, and denote one of its singular value decompositions as

$$
A=U \Sigma V^{T}
$$

such that $\sigma_{i i} \geq \sigma_{j j}$ whenever $1 \leq i<j \leq K$, where $K=\min \{M, N\}$.
(a) Show that the K-tuple $\left(\sigma_{11}, \sigma_{22}, \ldots, \sigma_{K K}\right)$ is uniquely determined.
(b) Show that if all the singular values are distinct and nonzero, then the first K columns of U and V are uniquely determined up to a change of sign. In other words, for each $i=1,2, \ldots, K$, there are exactly two choices of $\left(\vec{u}_{i}, \vec{v}_{i}\right)$; denoting one choice by (\vec{u}, \vec{v}), the other is given by $(-\vec{u},-\vec{v})$.
(c) Does the claim in (b) hold if we drop the assumption? Prove it or give a counterexample.
2. (a) Let $A, B \in M_{4 \times 4}(\mathbb{R})$ and the image transformation $\mathcal{O}: M_{4 \times 4}(\mathbb{R}) \rightarrow M_{4 \times 4}(\mathbb{R})$ is defined by:

$$
\mathcal{O}(f)=A f B
$$

please show that the transformation matrix H of \mathcal{O} is given by:

$$
H=B^{T} \otimes A
$$

(b) (Optional) In more general cases, let $A, B \in M_{n \times n}(\mathbb{R})$ and the image transformation $\mathcal{O}: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R})$ is defined by:

$$
\mathcal{O}(f)=A f B
$$

please show that the transformation matrix H of \mathcal{O} is also given by:

$$
H=B^{T} \otimes A
$$

3. We call $H_{n}(t)$ as the n-th Haar function, where $n \in \mathbb{N} \cup\{0\}$.
(a) Show the definition of $H_{n}(t)$.
(b) Write down the Haar transformation matrix \tilde{H} for 4×4 images.
(c) Suppose $A=\left(\begin{array}{cccc}2 & 4 & 7 & 6 \\ 2 & 3 & 1 & 0 \\ 1 & 2 & 1 & 5 \\ 2 & -1 & 4 & 1\end{array}\right)$. Compute the Haar transform $A_{\text {Haar }}$ of A, and compute the reconstructed image \tilde{A} after setting the 4 smallest (in absolute value) nonzero entries of $A_{\text {Haar }}$ to 0 .
4. Let

$$
A=\left(\begin{array}{ccc}
3 & 2 & 0 \\
2 & 3 & 0 \\
0 & 0 & \sqrt{2}
\end{array}\right)
$$

(a) Compute SVD of A. Express A as a linear combination of its elementary images.
(b) Suppose A_{2} is a rank 2 matrix and $\left\|A_{2}-A\right\|_{F}=5$. Find a suitable A_{2} and prove your answer with details.
5. Recall that the discrete Fourier transform (DFT) \hat{g} of an $N \times N$ image g is defined as

$$
\hat{g}(m, n)=\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k, l) e^{-2 \pi \sqrt{-1}\left(\frac{k m+l n}{N}\right)} .
$$

(a) Write down the Fourier transform matrix U for a 4×4 image, i.e. the matrix such that the discrete Fourier transform of f is $U f U^{T}$.
(b) Compute the DFT of the following 4×4 image

$$
g=(g(k, l))_{0 \leq k, l \leq 3}=\left(\begin{array}{cccc}
3 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

(c) Let $f \in M_{4 \times 4}(\mathbb{R})$ such that $\widehat{f * g}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. Compute f.
6. (Optional) Programming exercise: Compress a digital image using SVD, please try to show the rank- k approximations with $k=5,10,50$ respectively.
Hint: You can use any programming language (python, matlab, R and so on) with any thirdparty library, you DON'T need to implement the SVD algorithm yourself. Please submit the following as your solutions:

1. your code,
2. original image,
3. rank- k approximations for $k=5,10,50$.
