MMAT 5390: Mathematical Image Processing Assignment 2 solutions

1. Consider a real $M \times N$ matrix A, and denote one of its singular value decompositions as

$$
A=U \Sigma V^{T}
$$

such that $\sigma_{i i} \geq \sigma_{j j}$ whenever $1 \leq i<j \leq K$, where $K=\min \{M, N\}$.
(a) Show that the K-tuple $\left(\sigma_{11}, \sigma_{22}, \ldots, \sigma_{K K}\right)$ is uniquely determined.
(b) Show that if all the singular values are distinct and nonzero, then the first K columns of U and V are uniquely determined up to a change of sign. In other words, for each $i=1,2, \ldots, K$, there are exactly two choices of (\vec{u}_{i}, \vec{v}_{i}); denoting one choice by (\vec{u}, \vec{v}), the other is given by $(-\vec{u},-\vec{v})$.
(c) Does the claim in (b) hold if we drop the assumption? Prove it or give a counterexample.

Solution:

(a) $\left\{\sigma_{11}, \sigma_{22}, \ldots, \sigma_{K K}\right\}$ are the square roots of the eigenvalues of $A^{T} A$ or $A A^{T}$, whichever is smaller. As the entries of the K-tuple are listed in descending order, the K-tuple is uniquely determined.

More detailed version:

Recall that an SVD of $A \in M_{M \times N}(\mathbb{R})$ involves a triple $(U, \Sigma, V) \in M_{M \times M}(\mathbb{R}) \times$ $M_{M \times N}(\mathbb{R}) \times M_{N \times N}(\mathbb{R})$ such that $A=U \Sigma V^{T}$, and Σ is a diagonal matrix (in the sense that $\sigma_{i j}=0$ whenever $i \neq j$) with all entries nonnegative.
Let $A \in M_{M \times N}(\mathbb{R})$, and let $\left(U_{1}, \Sigma_{1}, V_{1}\right)$ and $\left(U_{2}, \Sigma_{2}, V_{2}\right)$ represent two SVDs of A, i.e.

$$
A=U_{1} \Sigma_{1} V_{1}^{T}=U_{2} \Sigma_{2} V_{2}^{T}
$$

which satisfy

$$
\left(\Sigma_{i}\right)_{k k} \geq\left(\Sigma_{i}\right)_{k+1, k+1}, \quad i=1,2, \quad k=1,2, \cdots, K-1
$$

Then

$$
U_{1} \Sigma_{1} \Sigma_{1}^{T} U_{1}^{T}=U_{1} \Sigma_{1} V_{1}^{T} V_{1} \Sigma_{1}^{T} U_{1}^{T}=A A^{T}=U_{2} \Sigma_{2} V_{2}^{T} V_{2} \Sigma_{2}^{T} U_{2}^{T}=U_{2} \Sigma_{2} \Sigma_{2}^{T} U_{2}^{T}
$$

and

$$
V_{1} \Sigma_{1}^{T} \Sigma_{1} V_{1}^{T}=V_{1} \Sigma_{1}^{T} U_{1}^{T} U_{1} \Sigma_{1} V_{1}^{T}=A^{T} A=V_{2} \Sigma_{2}^{T} U_{2}^{T} U_{2} \Sigma_{2} V_{2}^{T}=V_{2} \Sigma_{2}^{T} \Sigma_{2} V_{2}^{T}
$$

The multiset of eigenvalues of a square matrix is uniquely determined by the characteristic polynomial of the matrix, which in turn only depends on the matrix.
Since both $\Sigma_{1} \Sigma_{1}^{T}$ and $\Sigma_{2} \Sigma_{2}^{T}$ are diagonal matrices similar to $A A^{T}$, the multiset of diagonal entries of either of the matrices is the multiset of eigenvalues of $A A^{T}$, which implies $\Sigma_{1} \Sigma_{1}^{T}=\Sigma_{2} \Sigma_{2}^{T}$ due to their ordering. Similarly, $\Sigma_{1}^{T} \Sigma_{1}=\Sigma_{2}^{T} \Sigma_{2}$. The result follows from considering the square roots of the diagonal entries of $\left\{\begin{array}{ll}\Sigma_{1} \Sigma_{1}^{T} & \text { if } M \leq N \\ \Sigma_{1}^{T} \Sigma_{1} & \text { if } M \geq N\end{array}\right.$.
(b) Suppose $\left\{\sigma_{i i}: i=1,2, \cdots, K\right\}$ are distinct and nonzero. Then each eigenspace of $A^{T} A$ and $A A^{T}$ corresponding to eigenvalue $\sigma_{i i}^{2}$ has dimension 1 , which means that there are exactly two unit eigenvectors to be chosen from each eigenspace, each being the negative of the other. Such eigenvectors are precisely the first K columns of U and V. Combined with the fact that $\sigma_{i i}$ are in descending order, the first K columns of U and V are uniquely determined up to a change of sign.
(c) A simple counterexample is given by:

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I_{2} I_{2} I_{2}=U I_{2} U^{T}
$$

where I_{2} and $U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$ are unitary.
2. (a) Let $A, B \in M_{4 \times 4}(\mathbb{R})$ and the image transformation $\mathcal{O}: M_{4 \times 4}(\mathbb{R}) \rightarrow M_{4 \times 4}(\mathbb{R})$ is defined by:

$$
\mathcal{O}(f)=A f B,
$$

please show that the transformation matrix H of \mathcal{O} is given by:

$$
H=B^{T} \otimes A
$$

(b) (Optional) In more general cases, let $A, B \in M_{n \times n}(\mathbb{R})$ and the image transformation $\mathcal{O}: M_{n \times n}(\mathbb{R}) \rightarrow M_{n \times n}(\mathbb{R})$ is defined by:

$$
\mathcal{O}(f)=A f B
$$

please show that the transformation matrix H of \mathcal{O} is also given by:

$$
H=B^{T} \otimes A
$$

Solution: Here, we only need to prove the general situation (b), then (a) is just a special case for $n=4$. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ and $g=\mathcal{O}(f) \in M_{n \times n}(\mathbb{R})$, then we have

$$
g_{\alpha, \beta}=\sum_{x=1}^{n} a_{\alpha x}\left(\sum_{y=1}^{n} f(x, y) b_{y \beta}\right)=\sum_{x=1}^{n} \sum_{y=1}^{n} a_{\alpha x} b_{y \beta} f(x, y),
$$

Which means $h^{\alpha, \beta}(x, y)=a_{\alpha x} b_{y \beta}$. Since the transformation matrix

$$
\left.H=\left(\begin{array}{ccc}
& \left.\begin{array}{c}
x \rightarrow \\
\alpha \downarrow \\
\hline=1 \\
\beta=1
\end{array}\right)
\end{array}\right) ~ \cdots \quad\left(\begin{array}{cc}
x \rightarrow \\
\vdots \downarrow & \binom{y=n}{\beta=1}
\end{array}\right)\right)
$$

and

$$
\left(\begin{array}{c}
x \rightarrow \\
\alpha \downarrow \\
\left.\hline \begin{array}{c}
y=i \\
\beta=j
\end{array}\right)
\end{array}\right)=\left(\begin{array}{ccc}
h^{1, j}(1, i) & \cdots & h^{1, j}(n, i) \\
\vdots & \ddots & \vdots \\
h^{n, j}(1, i) & \cdots & h^{n, j}(n, i)
\end{array}\right)=\left(\begin{array}{ccc}
a_{11} b_{i j} & \cdots & a_{1 n} b_{i j} \\
\vdots & \ddots & \vdots \\
a_{n 1} b_{i j} & \cdots & a_{n n} b_{i j}
\end{array}\right)=b_{i j} A .
$$

Therefore

$$
H=\left(\begin{array}{ccc}
b_{11} A & \cdots & b_{n 1} A \\
\vdots & \ddots & \vdots \\
b_{1 n} A & \cdots & b_{n n} A
\end{array}\right)=B^{T} \otimes A .
$$

3. We call $H_{n}(t)$ as the n-th Haar function, where $n \in \mathbb{N} \cup\{0\}$.
(a) Show the definition of $H_{n}(t)$.
(b) Write down the Haar transformation matrix \tilde{H} for 4×4 images.
(c) Suppose $A=\left(\begin{array}{cccc}2 & 4 & 7 & 6 \\ 2 & 3 & 1 & 0 \\ 1 & 2 & 1 & 5 \\ 2 & -1 & 4 & 1\end{array}\right)$. Compute the Haar transform $A_{\text {Haar }}$ of A, and compute the reconstructed image \tilde{A} after setting the 4 smallest (in absolute value) nonzero entries of $A_{\text {Haar }}$ to 0 .

Solution:

(a) Haar function is defined as

$$
\begin{aligned}
& H_{0}(t)=\left\{\begin{array}{l}
1,0 \leq t<1 \\
0, \text { otherwise }
\end{array}\right. \\
& H_{1}(t)=\left\{\begin{array}{l}
1,0 \leq t<\frac{1}{2} \\
-1, \frac{1}{2} \leq t<1 \\
0, \text { otherwise }
\end{array}\right. \\
& H_{n}(t)=H_{2^{p}+n_{0}}(t)=\left\{\begin{array}{l}
\sqrt{2}^{p}, \frac{n_{0}}{2^{p}} \leq t<\frac{n_{0}+0.5}{2^{p}} \\
-\sqrt{2}^{p}, \frac{n_{0}+0.5}{2^{p}} \leq t<\frac{n_{0}+1}{2^{p}} \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where $p=1,2, \cdots$ and $n_{0}=0,1,2, \cdots, 2^{p}-1$.
(b)

$$
\tilde{H}=\frac{1}{\sqrt{4}}\left(\begin{array}{cccc}
H_{1}\left(\frac{0}{4}\right) & H_{1}\left(\frac{1}{4}\right) & H_{1}\left(\frac{2}{4}\right) & H_{1}\left(\frac{3}{4}\right) \\
H_{2}\left(\frac{0}{4}\right) & H_{2}\left(\frac{1}{4}\right) & H_{2}\left(\frac{2}{4}\right) & H_{2}\left(\frac{3}{4}\right) \\
H_{3}\left(\frac{0}{4}\right) & H_{3}\left(\frac{1}{4}\right) & H_{3}\left(\frac{2}{4}\right) & H_{3}\left(\frac{3}{4}\right) \\
H_{4}\left(\frac{0}{4}\right) & H_{4}\left(\frac{1}{4}\right) & H_{4}\left(\frac{2}{4}\right) & H_{4}\left(\frac{3}{4}\right)
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
\sqrt{2} & -\sqrt{2} & 0 & 0 \\
0 & 0 & \sqrt{2} & -\sqrt{2}
\end{array}\right) .
$$

(c) We have

$$
A_{\text {Haar }}=\tilde{H} A \tilde{H}^{T}=\frac{1}{4}\left(\begin{array}{cccc}
40 & -10 & -\sqrt{2} & \sqrt{2} \\
10 & 4 & -5 \sqrt{2} & 3 \sqrt{2} \\
13 \sqrt{2} & -11 \sqrt{2} & -2 & 0 \\
3 \sqrt{2} & \sqrt{2} & -8 & -14
\end{array}\right)
$$

Then we set the 4 smallest entries to 0 and get

$$
A_{\text {Haar }}^{\prime}=\frac{1}{4}\left(\begin{array}{cccc}
40 & -10 & 0 & 0 \\
10 & 4 & -5 \sqrt{2} & 3 \sqrt{2} \\
13 \sqrt{2} & -11 \sqrt{2} & 0 & 0 \\
3 \sqrt{2} & 0 & -8 & -14
\end{array}\right) \text {, }
$$

and the reconstructed image is

$$
\tilde{A}=\tilde{H}^{T} A_{\text {Haar }}^{\prime} \tilde{H}=\frac{1}{16}\left(\begin{array}{cccc}
38 & 58 & 110 & 98 \\
30 & 50 & 14 & 2 \\
16 & 28 & 16 & 84 \\
36 & -16 & 60 & 16
\end{array}\right)=\left(\begin{array}{cccc}
2.375 & 3.625 & 6.875 & 6.125 \\
1.875 & 3.125 & 0.875 & 0.125 \\
1 & 1.75 & 1 & 5.25 \\
2.25 & -1 & 3.75 & 1
\end{array}\right)
$$

4. Let

$$
A=\left(\begin{array}{ccc}
3 & 2 & 0 \\
2 & 3 & 0 \\
0 & 0 & \sqrt{2}
\end{array}\right)
$$

(a) Compute SVD of A. Express A as a linear combination of its elementary images.
(b) Suppose A_{2} is a rank 2 matrix and $\left\|A_{2}-A\right\|_{F}=5$. Find a suitable A_{2} and prove your answer with details.

Solution:

(a) We first compute the characteristic polynomial of $A A^{T}=\left(\begin{array}{ccc}13 & 12 & 0 \\ 12 & 13 & 0 \\ 0 & 0 & 2\end{array}\right)$. The characteristic polynomial of $A^{T} A$ is given by

$$
\begin{aligned}
\operatorname{det}\left(A^{T} A-\lambda E\right) & =\left|\begin{array}{ccc}
13-\lambda & 12 & 0 \\
12 & 13-\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right| \\
& =(2-\lambda)\left((13-\lambda)^{2}-12^{2}\right)=(2-\lambda)(1-\lambda)(25-\lambda)
\end{aligned}
$$

So the eigenvalues of $A^{T} A$ is $\lambda_{1}=25, \lambda_{2}=2$ and $\lambda_{3}=1$. The corresponding eigenvectors are

$$
\vec{v}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \vec{v}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text { and } \vec{v}_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) .
$$

Then we have

$$
\vec{u}_{1}=\frac{A^{T} \vec{v}_{1}}{\sqrt{\lambda_{1}}}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \vec{u}_{2}=\frac{A^{T} \vec{v}_{2}}{\sqrt{\lambda_{2}}}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \text { and } \vec{u}_{3}=\frac{A^{T} \vec{v}_{3}}{\sqrt{\lambda_{3}}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) .
$$

Therefore, $A=U \Sigma V^{T}$, where

$$
U=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right), \Sigma=\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } V=\left(\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right) .
$$

The eigenimages are given by
$\vec{u}_{1} \vec{v}_{1}^{T}=\frac{1}{2}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)=\left(\begin{array}{rrr}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0\end{array}\right)$ and
$\vec{u}_{2} \vec{v}_{2}^{T}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
$\vec{u}_{3} \vec{v}_{3}^{T}=\frac{1}{2}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)\left(\begin{array}{lll}1 & -1 & 0\end{array}\right)=\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0\end{array}\right)$.
Hence $A=5\left(\begin{array}{ccc}\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0\end{array}\right)+\sqrt{2}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)+\left(\begin{array}{ccc}\frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0\end{array}\right)$.
(b) Since $A=U \Sigma V^{T}$, let $A_{2}=U \Sigma_{2} V^{T}$, where

$$
\Sigma_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

It's clear that $\operatorname{rank}\left(A_{2}\right)=2$ and

$$
\left\|A_{2}-A\right\|_{F}=\left\|U\left(\Sigma_{2}-\Sigma\right) V^{T}\right\|_{F}=\left\|\Sigma_{2}-\Sigma\right\|_{F}=5
$$

5. Recall that the discrete Fourier transform (DFT) \hat{g} of an $N \times N$ image g is defined as

$$
\hat{g}(m, n)=\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} g(k, l) e^{-2 \pi \sqrt{-1}\left(\frac{k m+l n}{N}\right)} .
$$

(a) Write down the Fourier transform matrix U for a 4×4 image, i.e. the matrix such that the discrete Fourier transform of f is $U f U^{T}$.
(b) Compute the DFT of the following 4×4 image

$$
g=(g(k, l))_{0 \leq k, l \leq 3}=\left(\begin{array}{cccc}
3 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

(c) Let $f \in M_{4 \times 4}(\mathbb{R})$ such that $\widehat{f * g}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. Compute f.

Solution:

(a) $U=\frac{1}{4}\left(\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i\end{array}\right)$.
(b) $g=\left(\begin{array}{llll}3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. Then

$$
\begin{aligned}
\hat{g} & =U g U \\
& =\frac{1}{16}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right)\left(\begin{array}{cccc}
3 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -i & -1 & i \\
1 & -1 & 1 & -1 \\
1 & i & -1 & -i
\end{array}\right) \\
& =\frac{3}{16}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)+\frac{1}{16}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{llll}
1 & -1 & -1 & 1
\end{array}\right) \\
& =\frac{1}{8}\left(\begin{array}{llll}
2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1
\end{array}\right) .
\end{aligned}
$$

(c) Recall that $\widehat{f * g}=M N \hat{f} \odot \hat{g}$, where $\hat{f} \odot \hat{g}(m, n)=f(m, n) g(m, n)$.

$$
\begin{aligned}
& \text { Then for } \widehat{f * g}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \\
& 16 \hat{f} \odot \frac{1}{8}\left(\begin{array}{llll}
2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { and thus } \hat{f}=\left(\begin{array}{llll}
\frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) . \\
& \text { Hence } f=(4 \bar{U}) \hat{f}(4 \bar{U})=\frac{1}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right)=\frac{1}{4}\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right) .
\end{aligned}
$$

6. (Optional) Programming exercise: Compress a digital image using SVD, please try to show the rank- k approximations with $k=5,10,50$ respectively.
Hint: You can use any programming language (python, matlab, R and so on) with any thirdparty library, you DON'T need to implement the SVD algorithm yourself. Please submit the following as your solutions:
7. your code,
8. original image,
9. rank- k approximations for $k=5,10,50$.

Solution: The codes(Python and MATLAB versions) have been upload to course website.

