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Stochastic process, filtration

Let (Ω,F ,P) be a probability space, a stochastic process is a family
(Xn)n≥0 of random variables indexed by time n ≥ 0 (or tn, n ≥ 0).

A filtration is family F = (Fn)n≥0 of sub-σ-field of F such that
Fn ⊂ Fn+1 for all n ≥ 0.

Example

Let B = (Bn)n≥0 be some stochastic process, then the following
definition of Fn provides a filtration (Fn)n≥0:

Fn := σ(B0, B1, · · · , Bn).

Example

In particular, let B0 = 0, Bn =
∑n
k=1 ξk where (ξk)k≥1 is an i.i.d.

sequence of random variables with distribution P[ξk = ±1] = 1
2 . Then

F0 = {∅,Ω}, F1 = F0∪{A,Ac}, withA := {ξ1 = 1}, Ac = {ξ1 = −1}, · · ·
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Stochastic process, filtration

Let X = (Xn)n≥0 be a stochastic process, F = (Fn)n≥1 be a filtration.

We say X is adapted to the filtration F if

Xn ∈ Fn (i.e. Xn is Fn-measurable), for all n ≥ 0.

We say X is predictable w.r.t. F if

Xn ∈ F(n−1)∨0 for all n ≥ 0.

Remark: Let F be the filtration generated by the process B as in the
above example. If X is F-adapted, then Xn ∈ Fn = σ(B0, · · · , Bn) so
that

Xn = gn(B0, · · · , Bn), for some measurable function gn.

Similarly, if X is F-predictable, then Xn+1 ∈ Fn so that

Xn+1 = g′n+1(B0, · · · , Bn), for some measurable function g′n+1.
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Example

Let (ξk)k≥1 be a sequence of i.i.d random variable, such that
P
[
ξk = ±1

]
= 1

2 . Then the process X = (Xn)n≥0 defined as follows is
called a random walk:

X0 = 0, Xn =

n∑
k=1

ξk.

Remark: Given a process X, let F = (Fn)n≥0 be defined by
Fn := σ(X0, · · · , Xn), we say F is the natural filtration generated by X.

In above examples, a stochastic process usually starts from time 0, but
we can also consider stochastic process starting from some time tk.
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Let X = (Xn)n≥0 be a stochastic process, F = (Fn)n≥1 be a filtration.

We say X is a martingale (w.r.t. F) if X is F-adapted, each random
variable Xn is integrable, and

E[Xn+1|Fn] = Xn.

We say X is a sub-martingale (w.r.t. F) if X is F-adapted, each
random variable Xn is integrable, and

E[Xn+1|Fn] ≥ Xn.

We say X is a super-martingale (w.r.t. F) if X is F-adapted, each
random variable Xn is integrable, and

E[Xn+1|Fn] ≤ Xn.

Remark: A martingale X (w.r.t. to some filtration F) is a
sub-martingale, and at the same time a super-martingale.
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Example

Recall that the random walk X = (Xn)n≥0 is defined as follows:

X0 = 0, Xn =

n∑
k=1

ξk,

where (ξk)k≥1 be a sequence of i.i.d. of random variable such that
P[ξ = ±1] = 1

2 .
Then

X is a martingale;

(X2
n)n≥0 is a sub-martingale;

(X2
n − n)n≥0 is a martingale.

MMAT 5340 - Probability and Stochastic Analysis



Martingale
Optional stopping theorem
Convergencee of martingale

Martingale

Example

Let (Zk)k≥1 be a sequence of random variable such that Zk ∼ N(0, 1),
and σ ∈ R, X0 ∈ R be real constants. Let Fn := σ(Z1, · · · , Zn), and

Xn := X0 exp
(
σ

n∑
k=1

Zk −
1

2
nσ2

)
.

Then (Xn)n≥1 is a martingale (w.r.t. F).

Example

Let F = (Fn)n≥1 be a filtration, Z be an integrable random variable, and

Xn := E
[
Z
∣∣Fn].

Then (Xn)n≥1 is a martingale (w.r.t. F).
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Lemma

Let F be a filtration, and X be a martingale w.r.t. F. Let FX denote the
natural filtration generated by X. Then X is also a martingale w.r.t. FX .

Remark: We notice that a martingale X is associated to some filtration
F. However, when the filtration is not specified, we say X is a martingale
means that X is a martingale w.r.t. the natural filtration generated by
X. In this case, we write

E
[
Xn+1

∣∣X0, · · · , Xn

]
= Xn, for all n ≥ 0.
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Lemma

Let X be a martingale w.r.t. the filtration F, then

E
[
Xm

∣∣Fn] = Xn, for all m ≥ n ≥ 0.

Moreover,
E
[
Xn

]
= E

[
X0

]
, for all n ≥ 0.
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Stopping time

Definition: Let F be a filtration, a stopping time w.r.t. F is a random
variable τ : Ω −→ {0, 1, · · · } ∪ {∞} such that

{τ ≤ n} ∈ Fn, for all n ≥ 0. (1)

Remark: In place of (1), it is equivalent to define the stopping time by
the property:

{τ = n} ∈ Fn, for all n ≥ 0.

Lemma

Let X be a stochastic process adapted to the filtration F, and B be a
Borel set in R. Then the hitting time τ defined below is a stopping w.r.t.
F:

τ := inf{n ≥ 0 : Xn ∈ B}.

Remark: In above, we use the convention inf ∅ = +∞.
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Doob’s optional stopping theorem

Given a stochastic process X and a stopping time τ w.r.t. some filtration
F.

Xτ∧n(ω) :=

{
Xn(ω) if τ(ω) ≥ n,
Xτ(ω)(ω) if τ(ω) < n.

Theorem

Let F be fixed filtration, X be a F-martingale, and τ be a F-stopping
time. Then the process (Xτ∧n)n≥0 is still a F-martingale.

Remark: When X is martingale and τ is a stopping w.r.t. the same
filtration, it follows that

E
[
Xτ∧n

]
= E

[
X0

]
.
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Doob’s optional stopping theorem

Theorem

Let F be fixed filtration, X be a F-martingale, and τ be a F-stopping
time. Assume that τ is bounded by some constant m ≥ 0, or the process
(Xτ∧n)n≥0 is uniformly bounded. Then

E
[
Xτ

]
= E

[
X0

]
.
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Doob’s optional stopping theorem

Example

Let (ξk)k≥1 be a sequence of i.i.d. random variables, x ∈ N be a positive
integer, and

Xn := x+

n∑
k=1

ξk.

Let us define

τ := inf
{
n ≥ 0 : Xn ≤ 0 or Xn ≥ N

}
.

Compute the value of E
[
Xτ

]
. Compute the probability P

[
Xτ = 0

]
.
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Convergence of martingale

Theorem

Let X be a submartingale such that supn≥0 E[|Xn|] <∞. Then

lim
n→∞

Xn = X, for some r.v. X ∈ L1.
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Convergence of martingale

Theorem

Let X be a martingale such that supn≥0 E[|Xn|2] <∞. Then

lim
n→∞

Xn = X, for some r.v. X ∈ L2.
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Application: Law of large number

Theorem (Law of large number)

Let (ξk)k≥1 be a sequence of i.i.d. random variables, such that
E[|ξi|] <∞. Then

1

n

n∑
k=1

ξk −→ E
[
X1

]
, a.s.

We will use the theorem of convergence of martingale to prove the above
theorem.
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