MMAT 5340 - Probability and Stochastic Analysis

II. Discrete time martingale

MMAT 5340 - Probability and Stochastic Analysis

Stochastic process, filtration

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, a *stochastic process* is a family $(X_n)_{n\geq 0}$ of random variables indexed by time $n\geq 0$ (or $t_n, n\geq 0$).

A *filtration* is family $\mathbb{F} = (\mathcal{F}_n)_{n \geq 0}$ of sub- σ -field of \mathcal{F} such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for all $n \geq 0$.

Example

Let $B = (B_n)_{n \ge 0}$ be some stochastic process, then the following definition of \mathcal{F}_n provides a filtration $(\mathcal{F}_n)_{n \ge 0}$:

$$\mathcal{F}_n := \sigma(B_0, B_1, \cdots, B_n).$$

Example

In particular, let $B_0 = 0$, $B_n = \sum_{k=1}^n \xi_k$ where $(\xi_k)_{k\geq 1}$ is an i.i.d. sequence of random variables with distribution $\mathbb{P}[\xi_k = \pm 1] = \frac{1}{2}$. Then

 $\mathcal{F}_0 = \{ \emptyset, \Omega \}, \ \mathcal{F}_1 = \mathcal{F}_0 \cup \{ A, A^c \}, \text{ with } A := \{ \xi_1 = 1 \}, \ A^c = \{ \xi_1 = -1 \},$

Stochastic process, filtration

Let $X = (X_n)_{n \ge 0}$ be a stochastic process, $\mathbb{F} = (\mathcal{F}_n)_{n \ge 1}$ be a filtration.

• We say X is *adapted* to the filtration \mathbb{F} if

 $X_n \in \mathcal{F}_n$ (i.e. X_n is \mathcal{F}_n -measurable), for all $n \ge 0$.

• We say X is *predictable* w.r.t. \mathbb{F} if

$$X_n \in \mathcal{F}_{(n-1)\vee 0}$$
 for all $n \ge 0$.

Remark: Let \mathbb{F} be the filtration generated by the process B as in the above example. If X is \mathbb{F} -adapted, then $X_n \in \mathcal{F}_n = \sigma(B_0, \cdots, B_n)$ so that

 $X_n = g_n(B_0, \cdots, B_n)$, for some measurable function g_n .

Similarly, if X is \mathbb{F} -predictable, then $X_{n+1} \in \mathcal{F}_n$ so that

 $X_{n+1} = g'_{n+1}(B_0, \cdots, B_n),$ for some measurable function g'_{n+1} .

Stochastic process, filtration

Example

Let $(\xi_k)_{k\geq 1}$ be a sequence of *i.i.d* random variable, such that $\mathbb{P}[\xi_k = \pm 1] = \frac{1}{2}$. Then the process $X = (X_n)_{n\geq 0}$ defined as follows is called a random walk:

$$X_0 = 0, \quad X_n = \sum_{k=1}^n \xi_k.$$

Remark: Given a process X, let $\mathbb{F} = (\mathcal{F}_n)_{n \ge 0}$ be defined by $\mathcal{F}_n := \sigma(X_0, \cdots, X_n)$, we say \mathbb{F} is the *natural filtration* generated by X.

In above examples, a stochastic process usually starts from time 0, but we can also consider stochastic process starting from some time t_k .

Martingale

- Let $X = (X_n)_{n \ge 0}$ be a stochastic process, $\mathbb{F} = (\mathcal{F}_n)_{n \ge 1}$ be a filtration.
 - We say X is a *martingale* (*w.r.t.* \mathbb{F}) if X is \mathbb{F} -adapted, each random variable X_n is integrable, and

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] = X_n.$$

• We say X is a *sub-martingale* (*w.r.t.* 𝔽) if X is 𝔽-adapted, each random variable X_n is integrable, and

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] \ge X_n.$$

• We say X is a *super-martingale (w.r.t.* F) if X is F-adapted, each random variable X_n is integrable, and

$$\mathbb{E}[X_{n+1}|\mathcal{F}_n] \le X_n.$$

Remark: A martingale X (w.r.t. to some filtration \mathbb{F}) is a sub-martingale, and at the same time a super-martingale.

Martingale

Example

Recall that the random walk $X = (X_n)_{n \ge 0}$ is defined as follows:

$$X_0 = 0, \quad X_n = \sum_{k=1}^n \xi_k,$$

where $(\xi_k)_{k\geq 1}$ be a sequence of i.i.d. of random variable such that $\mathbb{P}[\xi = \pm 1] = \frac{1}{2}$. Then

- X is a martingale;
- $(X_n^2)_{n\geq 0}$ is a sub-martingale;
- $(X_n^2 n)_{n \ge 0}$ is a martingale.

Martingale stopping theorem

Optional stopping theorem Convergencee of martingale

Martingale

Example

Let $(Z_k)_{k\geq 1}$ be a sequence of random variable such that $Z_k \sim N(0,1)$, and $\sigma \in \mathbb{R}$, $X_0 \in \mathbb{R}$ be real constants. Let $\mathcal{F}_n := \sigma(Z_1, \cdots, Z_n)$, and

$$X_n := X_0 \exp\left(\sigma \sum_{k=1}^n Z_k - \frac{1}{2}n\sigma^2\right).$$

Then $(X_n)_{n\geq 1}$ is a martingale (w.r.t. \mathbb{F}).

Example

Let $\mathbb{F} = (\mathcal{F}_n)_{n \ge 1}$ be a filtration, Z be an integrable random variable, and

$$X_n := \mathbb{E}[Z|\mathcal{F}_n].$$

Then $(X_n)_{n\geq 1}$ is a martingale (w.r.t. \mathbb{F}).

Martingale

Lemma

Let \mathbb{F} be a filtration, and X be a martingale w.r.t. \mathbb{F} . Let \mathbb{F}^X denote the natural filtration generated by X. Then X is also a martingale w.r.t. \mathbb{F}^X .

Remark: We notice that a martingale X is associated to some filtration \mathbb{F} . However, when the filtration is not specified, we say X is a martingale means that X is a martingale w.r.t. the natural filtration generated by X. In this case, we write

$$\mathbb{E}[X_{n+1}|X_0,\cdots,X_n] = X_n, \text{ for all } n \ge 0.$$

Martingale

Optional stopping theorem Convergencee of martingale

Martingale

Lemma

Let X be a martingale w.r.t. the filtration \mathbb{F} , then

$$\mathbb{E}[X_m | \mathcal{F}_n] = X_n, \text{ for all } m \ge n \ge 0.$$

Moreover,

$$\mathbb{E}[X_n] = \mathbb{E}[X_0], \text{ for all } n \ge 0.$$

Stopping time

Definition: Let \mathbb{F} be a filtration, a *stopping time* w.r.t. \mathbb{F} is a random variable $\tau : \Omega \longrightarrow \{0, 1, \cdots\} \cup \{\infty\}$ such that

$$\{\tau \le n\} \in \mathcal{F}_n, \text{ for all } n \ge 0.$$
(1)

Remark: In place of (1), it is equivalent to define the stopping time by the property:

$$\{\tau = n\} \in \mathcal{F}_n, \text{ for all } n \ge 0.$$

Lemma

Let X be a stochastic process adapted to the filtration \mathbb{F} , and B be a Borel set in \mathbb{R} . Then the hitting time τ defined below is a stopping w.r.t. \mathbb{F} :

$$\tau := \inf\{n \ge 0 : X_n \in B\}.$$

Remark: In above, we use the convention $\inf \emptyset = +\infty$.

Doob's optional stopping theorem

Given a stochastic process X and a stopping time τ w.r.t. some filtration $\mathbb F.$

$$X_{\tau \wedge n}(\omega) := \begin{cases} X_n(\omega) & \text{if } \tau(\omega) \ge n, \\ X_{\tau(\omega)}(\omega) & \text{if } \tau(\omega) < n. \end{cases}$$

Theorem

Let \mathbb{F} be fixed filtration, X be a \mathbb{F} -martingale, and τ be a \mathbb{F} -stopping time. Then the process $(X_{\tau \wedge n})_{n \geq 0}$ is still a \mathbb{F} -martingale.

Remark: When X is martingale and τ is a stopping w.r.t. the same filtration, it follows that

$$\mathbb{E}[X_{\tau \wedge n}] = \mathbb{E}[X_0].$$

Doob's optional stopping theorem

Theorem

Let \mathbb{F} be fixed filtration, X be a \mathbb{F} -martingale, and τ be a \mathbb{F} -stopping time. Assume that τ is bounded by some constant $m \ge 0$, or the process $(X_{\tau \wedge n})_{n \ge 0}$ is uniformly bounded. Then

$$\mathbb{E}[X_{\tau}] = \mathbb{E}[X_0].$$

Doob's optional stopping theorem

Example

Let $(\xi_k)_{k\geq 1}$ be a sequence of i.i.d. random variables, $x\in\mathbb{N}$ be a positive integer, and

$$X_n := x + \sum_{k=1}^n \xi_k.$$

Let us define

$$\tau := \inf \{ n \ge 0 : X_n \le 0 \text{ or } X_n \ge N \}.$$

Compute the value of $\mathbb{E}[X_{\tau}]$. Compute the probability $\mathbb{P}[X_{\tau}=0]$.

Convergence of martingale

Theorem

Let X be a submartingale such that $\sup_{n>0} \mathbb{E}[|X_n|] < \infty$. Then

$$\lim_{n \to \infty} X_n = X, \text{ for some } r.v. \ X \in L^1.$$

Convergence of martingale

Theorem

Let X be a martingale such that $\sup_{n>0}\mathbb{E}[|X_n|^2]<\infty.$ Then

$$\lim_{n\to\infty} X_n = X, \text{ for some r.v. } X \in L^2.$$

Application: Law of large number

Theorem (Law of large number)

Let $(\xi_k)_{k\geq 1}$ be a sequence of i.i.d. random variables, such that $\mathbb{E}[|\xi_i|] < \infty$. Then

$$\frac{1}{n}\sum_{k=1}^{n}\xi_k \longrightarrow \mathbb{E}[X_1], \text{ a.s.}$$

We will use the theorem of convergence of martingale to prove the above theorem.