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1 Probability theory review

1.1 Basic probability theory

A probability space is a triple (Ω,F ,P), where

• Ω is the sample space, which is a (non-empty) set.

• F is a a σ-field, which is a space of subsets of Ω satisfying

– Ω ∈ F ,
– A ∈ F =⇒ AC ∈ F ,
– An ∈ F , n ≥ 1 =⇒ ∪n≥1 An ∈ F .

A set A ∈ F is called an event.

• P : F −→ [0, 1] is a probability measure, i.e.

– P[Ω] = 1,

– If {An, n ≥ 1} ⊂ F be such that Ai ∩ Aj = ∅ for all i 6= j, then P[∪n≥1An] =∑
n≥1 P[An].

Example 1.1. (i) Ω = {1, 2, · · · , n}, F := σ({1}, · · · , {n}), P[{i}] = 1
n , for each i = 1, · · · , n.

In above, σ({1}, · · · , {n}) means the smallest σ-field containing all events {1}, · · · , {n}. In this
case, it is the space of all subsets of Ω.

(ii) Ω = R, F := B(R) is the Borel σ-field on R, i.e. the smallest σ-field which contains all
open set in R. For some density function ρ : R −→ R+, a probability measure P can be defined,
first for all intervals (a, b) with a ≤ b, by P[(a, b)] :=

∫ b
a ρ(x)dx, and then extended on the Borel

σ-field F .

A random variable is a map X : Ω −→ R satisfying

X−1(A) := {ω ∈ Ω : X(ω) ∈ A} ∈ F , for all A ∈ B(R)⇐⇒ {X ≤ x} ∈ F , for all x ∈ R.

The distribution function of X is given by

F (x) := P[X ≤ x], x ∈ R.

Example 1.2. (i) A discrete random variable X:

pi = P[X = xi], i ∈ N,
∑
i∈N

pi = 1.

(ii) A continuous random variable X (with continuous probability distribution), one has the den-
sity function

ρ(x) = F ′(x), x ∈ R.

(iii) There exists a some random variable, whoseis distribution neither discrete nor continuous.
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Expectation Let X be a (discrete or continuous) random variable, the expectation of E[f(X)]
is defined as follows:

• When X is a discrete random variable such that P[X = xi] = pi for i ∈ N. Then

E[f(X)] :=
∑
i∈N

f(xi)P[X = xi] =
∑
i∈N

f(xi)pi.

• When X is a continuous random variable with density ρ : R −→ R+. Then

E[f(X)] :=

∫
R
f(x)ρ(x)dx, whenever the integral is well defined.

Remark 1.3. In general case, one defines the expectation as the following Lebesgue integration:

E[f(X)] :=

∫
Ω
f(X(ω))dP(ω).

A rigorous definition of the above integral needs the measure theory, which is not required in this
course.

For two (square integrable) random variables X and Y , their variance and co-variance are
defined by

Var[X] := E
[(
X − E[X]

)2]
, Cov[X,Y ] := E

[(
X − E[X]

)(
Y − E[Y ]

)]
.

The characteristic function of X is defined by Φ(θ) := E[eiθX ].

Independence The events A1, · · · , An ∈ F are said to be (mutually) independent if

P
[
A1 ∩ · · · ∩An] =

n∏
i=1

P[Ai].

Next, we say that the σ-fields F1, · · · ,Fn are (mutually) independent if

P
[
A1 ∩ · · · ∩An] =

n∏
i=1

P[Ai], for all A1 ∈ F1, · · · , An ∈ Fn.

Finally, we say that random variables X1, · · · , Xn are (mutually) independent if

σ(X1), · · · , σ(Xn) are independent.

Remark 1.4. (i) The σ-field σ(X1) is defined as the smallest σ-field containing all events

{X1 ≤ x} := {ω ∈ Ω : X1(ω) ≤ x}, for all x ∈ R.

As X1 is a random variable, it is clear that σ(X1) ⊂ F .

(ii) We say that the a random variable X1 is independent of F2 if σ(X1) and F2 are independent.
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Example 1.5. Let us consider the case, where Ω = {0, 1, 2, 3}, P[X = ω] = 1
4 , define

X1(ω) =

{
0 ω ∈ {0, 2},
1 ω ∈ {1, 3},

X2(ω) =

{
0 ω ∈ {0, 1},
1 ω ∈ {2, 3}.

In this case, σ(X1) = {∅,Ω, {0, 2}, {1, 3}}, and σ(X2) = {∅,Ω, {0, 1}, {2, 3}}. Moreover, it can
be checked that X1 is independent of σ(X2). For example, one can check that

P
[
{X1 = 0} ∩ {X2 = 0}

]
= P

[
{0}
]

= P
[
{0, 2}

]
P
[
{0, 1}

]
=

1

4
,

which implies that the two events {X1 = 0} and {X2 = 0} are independent. Similarly, one can
check that {X1 = i} is independent of {X2 = j} for all i, j ∈ {0, 1}. This is enough to show that
X1 and X2 are independent.

Lemma 1.6. If X1, · · · , Xn are independent, fi are measurable functions. Then f1(X1), · · · , fn(Xn)
are independent.

Proof. Let us consider the case n = 2. To prove that f1(X1) is independent of f2(X2), it is enough
to check that the event {f1(X1) ≤ y1} is independent of the event {f2(X2) ≤ y2} for all real
numbers y1, y2 ∈ R. At the same time, we notice that {fi(Xi) ≤ yi} = {Xi ∈ f−1

i ((−∞, yi])} ∈
σ(Xi). Since σ(X1) is independent of σ(X2), this is enough to conclude the proof.

Lemma 1.7. If X1, · · · , Xn are independent, then

E[f1(X1) · · · fn(Xn)] = E[f1(X1)] · · ·E[fn(Xn)].

Consequently,
Var[X1 + · · ·+Xn] = Var[X1] + · · ·+ Var[Xn].

Cov[fi(Xi), fj(Xj)] = 0, i 6= j.

Remark 1.8. : The inverse may not be correct. Let us consider a random variable X1 ∼ U [−1, 1]
follows the uniform distribution on [−1, 1], whose density function is given by ρ(x) = 1

21{−1≤x≤1}.
Let X2 := X2

1 . By direct computation, one can check that

E[X1X2] = E[X1]E[X2], and hence Cov[X1, X2] = 0.

Nevertheless, it is clear that X1 and X2 are not independent.

We next provide some notions of convergence of random variables. Let (Xn)n≥1 a sequence
of random variables, ans X be a r.v.

• Almost sure convergence: We say Xn converges almost surely to X if

P
[

lim
n→∞

Xn = X
]

= 1.

• Convergence in probability: We say Xn converges to X in probability if, for any ε > 0,

lim
n→∞

P[|Xn −X| ≥ ε] = 0.

• Convergence in distribution: We say Xn converges to X in distribution if, for any bounded
continuous function f ,

lim
n→∞

E[f(Xn)] = E[f(X)].
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• Convergence in Lp (p ≥ 1) space: Assume E[|Xn|p] <∞, we say Xn converges to X in Lp

space if
lim
n→∞

E
[
|Xn −X|p

]
= 0.

Lemma 1.9 (Relations between the different notions of the convergence). One has

Cvg a.s. =⇒ Cvg in prob. =⇒ Cvg in dist.,

Cvg in Lp =⇒ Cvg in prob.

Cvg in prob. =⇒ Cvg a.s. along a subsequence.

Lemma 1.10 (Monotone convergence theorem). Assume that 0 ≤ Xn ≤ Xn+1 for all n ≥ 1,
then

E
[

lim
n→∞

Xn

]
= lim

n→∞
E[Xn].

Remark 1.11. In practice, we may have Xn := fn(X) for a sequence (fn)n≥1 satisfying 0 ≤
f1 ≤ f2 ≤ · · · . In this case, we have

E
[

lim
n→∞

fn(X)
]

= lim
n→∞

E[fn(X)].

Theorem 1.1 (Law of Large Number). Assume that (Xn)n≥1 is an i.i.d. sequence with the same
distribution of X and such that E[|X|] <∞. Then

lim
n→∞

Xn := lim
n→∞

1

n

n∑
k=1

Xk = E[X], a.s.

Theorem 1.2 (Central Limit Theorem). Assume that (Xn)n≥1 is an i.i.d. sequence with the
same distribution of X and such that E[|X|2] <∞. Then

√
n
(
Xn − E[X]

)√
Var[X]

converges in distribution to N(0, 1).

We finally provide some useful inequalities.

Lemma 1.12 (Jensen inequality). Let X be a r.v., φ be a convex function. Assume that E[|X|] <
∞ and E[|φ(X)|] <∞. Then

φ(E[X]) ≤ E
[
φ(X)

]
.

Proof. As φ is a convex function, there exists an affine function g(x) = ax+ b such that

φ(E[X]) = g(E[X]), and φ(x) ≥ g(x) for all x ∈ R.

Therefore,

E[φ(X)] ≥ E[g(X)] = E[aX + b] = aE[X] + b = g(E[X]) = φ(E[X]).

Lemma 1.13 (Chebychev inequality). Let X be a r.v., f : R → R+ be an increasing function.
Assume that E[f(X)] <∞ and f(a) > 0. Then

P[X ≥ a] ≤ E[f(X)]

f(a)]
.
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Proof. We will prove this for continuous random variable X, and the proof for discrete random
variable X is essentially the same, replacing integrals with sums. Let ρ(x) be the probability
density function of X. By definition, E[f(X)] =

∫∞
−∞ f(x)ρ(x)dx. By monotonicity of f(x), and

the fact that f(x), ρ(x) are non-negative,

E[f(X)] =

∫ ∞
−∞

f(x)ρ(x)dx

=

∫ a

−∞
f(x)ρ(x)dx+

∫ ∞
a

f(x)ρ(x)dx

≥
∫ ∞
a

f(x)ρ(x)dx

≥
∫ ∞
a

f(a)ρ(x)dx

the result follows by taking out the constant f(a) from the integral.

Lemma 1.14 (Cauchy-Schwarz inequality). Let X and Y be two r.v. Assume that E[|X|2] <∞
and E[|Y |2] <∞. Then

E[XY ] ≤
√

E[|X|2]E[|Y |2].

1.2 Conditional expectation

Theorem 1.3. Let (Ω,F ,P) be a probability space, G be a sub-σ-field of F , X a random variable.
Assume that E[|X|] <∞. Then there exists a random variable Z satisfying the following:

• E[|Z|] <∞.

• Z is G-measurable.

• E[XY ] = E[ZY ], for all G-measurable bounded random variables Y .

Moreover, the random Z is unique in the sense of almost sure.

Definition 1.15. We say that the random variable Z given in Theorem 1.3 is the conditional
expectation of X knowing G, and denote

E[X|G] := Z.

When G = σ(Y1, · · · , Yn), for Y = (Y1, · · · .Yn), we also write

E[X|Y1, · · · , Yn] := E[X|G].

In this case, there exists a measurable function f : Rn → R such that E[X|Y ] = f(Y ). To
compute E[X|Y ], it is enough to compute the function:

E[X|Y = y] := f(y), for all y ∈ Rn.

Example 1.16. (i) Discrete case: P[X = xi, Y = yj ] = pi,j with
∑

i,j pi,j = 1. Then

E[X|Y = yj ] =
E[X1Y=yj ]

E[1Y=yj ]
=

∑
i∈N xipi,j∑
i∈N pi,j

.
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Proof. Let us denote f(yj) :=
∑
i∈N xipi,j∑
i∈N pi,j

, then it is enough to show that E[X|Y ] = f(Y ).

First, it is trivial that f(Y ) is σ(Y )-measurable.
Next, by direct computation,

E[|f(Y )|] =
∑
j∈N
|f(yj)|P[Y = yj ] =

∑
j∈N

|
∑

i∈N xipi,j |∑
i∈N pi,j

∑
i∈N

pi,j ≤
∑
i,j∈N

|xi|pi,j = E[|X|] <∞.

Finally, for any σ(Y )-measurable bounded random variable Z, there exists a measurable function
g : Rn → R such that Z = g(Y ), then we have

E[f(Y )g(Y )] =
∑
j∈N

f(yj)g(yj)P[Y = yj ] =
∑
i,j∈N

xig(yj)pi,j = E[Xg(Y )].

This is enough to conclude the proof by the definition of conditional expectation.

(ii) Continuous case: Let ρ(x, y) be the density function of (X,Y ), and assume that
∫
R ρ(x, y)dx >

0 for all y ∈ R. Then

E[X|Y = y] =

∫
R xρ(x, y)dx∫
R ρ(x, y)dx

. (1)

Proof. Let us denote the r.h.s. of (1) as f(y). Then it is enough to show that E[X|Y ] = f(Y ).

First, it is clear that f(Y ) is σ(Y )-measurable.
Next,

E[|f(Y )|] =

∫
R

∫
R
|f(y)|ρ(x, y)dxdy =

∫
R

∫
R

∣∣∣∣
∫
R xρ(x, y)dx∫
R ρ(x, y)dx

∣∣∣∣ρ(x, y)dxdy

≤
∫
R

∫
R

∫
R |x|ρ(x, y)dx∫
R ρ(x, y)dx

ρ(x, y)dxdy =

∫
R

∫
R
|x|ρ(x, y)dxdy = E[|X|] <∞.

Finally, for any σ(Y )-measurable bounded random variable Z, there exists a measurable function
g : Rn → R such that Z = g(Y ), then we have

E
[
f(Y )g(Y )

]
=

∫
R

∫
R
f(y)g(y)ρ(x, y)dxdy =

∫
R

∫
R

∫
R xρ(x, y)dx∫
R ρ(x, y)dx

g(y)ρ(x, y)dxdy

=

∫
R

∫
R
xg(y)ρ(x, y)dxdy = E[Xg(Y )].

This shows that E[X|Y ] = f(Y ) by the definition of conditional expectation.

Example 1.17. Let X and Y be two independent random variables with the same distribution,
and P[X = ±1] = P[X = ±1] = 1

2 . One can compute that

E[X] = 0, and E[X + Y |Y ] = Y.

We finally provide some properties of the conditional expectation from its definition.

Lemma 1.18. Let X and Y be two r.v. such that E[|X|] <∞ and E[|Y |] <∞, a, b be two real
numbers. Then

E[aX + bY |G] = aE[X|G] + bE[Y |G].

7



Proof. It is enough to verify that aE[X|G]+bE[Y |G] satisfies the three properties in the definition
of the conditional expectation E[aX + bY |G].

First, aE[X|G] + bE[Y |G] is obviously G-measurable.
Next, from the definition of conditional expectation, we know E[|E[X|G]|],E[|E[Y |G]|] < ∞,

then

E[|aE[X|G] + bE[Y |G]|] ≤ |a|E[|E[X|G]|] + |b|E[|E[Y |G]|] <∞.

Finally, for any G-measurable bounded random variable Z, we know that

E[E[X|G]Z] = E[XZ],E[E[Y |G]Z] = E[Y Z].

Then by linearity of expectation, we have

E[(aE[X|G] + bE[Y |G])Z] = aE[E[X|G]Z] + bE[E[Y |G])Z]

= aE[XZ] + bE[Y Z] = E[(aX + bY )Z].

Lemma 1.19. Let X, Y be r.v. such that E[|X|] < ∞, Y is G-measurable and E[|XY |] < ∞,
then

E[E[X|G]] = E[X], and E[XY |G] = E[X|G]Y.

If X is independent of G, then
E[X|G] = E[X].

Proof. First, by taking Y = 1Ω in the third property in Theorem 1.3, it follows immediately
that E[E[X|G]] = E[X].

To prove E[XY |G] = E[X|G]Y , it is equivalent to verify that E[X|G]Y satisfies the three
properties in the definition of conditional expectation for E[XY |G], by the uniqueness of the
conditional expectation.

Let us first assume that X and Y are nonnegative. Then for any k ∈ N, then E[X|G] (Y ∧k) is
G-measurable since both of E[X|G] and (Y ∧k) are G-measurable. Moreover, for the integrability,
one has

E[|E[X|G](Y ∧ k)|] ≤ kE[|E[X|G]|] <∞.

Finally, for any bounded G-measurable r.v. Z, (Y ∧ k)Z is bounded and G-measurable, then one
has

E[E[X|G](Y ∧ k)Z] = E[X(Y ∧ k)Z] = E[E[X(Y ∧ k)|G]Z].

Hence it follows that
E[X(Y ∧ k)|G] = E[X|G](Y ∧ k).

Then by monotone convergence theorem for conditional expectation (see Lemma 1.21 below),
one obtains that

E[X|G]Y = lim
k→+∞

E[X|G](Y ∧ k) = lim
k→+∞

E[X(Y ∧ k)|G] = E[ lim
k→+∞

X(Y ∧ k)|G] = E[XY |G].
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When X, Y are not always nonnegative, one can write X = X+−X−, Y = Y +−Y −, where
X+, X−, Y + and Y − are all nonneagive random variables. Then

E[X|G]Y = E[X+ −X−|G](Y + − Y −)

= E[X+|G]Y + − E[X−|G]Y + − E[X+|G]Y − + E[X−|G]Y −

= E[X+Y +|G]− E[X−Y +|G]− E[X+Y −|G] + E[X−Y −|G]

= E[(X+ −X−)(Y + − Y −)|G]

= E[XY |G].

Moreover, E[X|G]Y is G-measurable since both of E[X|G] and Y are G-measurable. One can
also check the integrability condition by

E[|E[X|G]Y |] = E[|E[XY |G]|] <∞,

which proves that E[XY |G] = E[X|G]Y .

Finally, when X is independent of G, we consider E[X] as a constant r.v., and check that it
satisfies the properties in the definition of conditional expectation E[X|G]. As a constant r.v.,
E[X] is clearly G-measurable and integrable. Moreover, for any bounded G-measurability r.v. Z,
we have by linearity of expectation

E[E[X]Z] = E[XZ].

This proves that E[X] is the conditional expectation of X knowing G.

Lemma 1.20. Let X be a random variable, ϕ be a convex function. Then

E[ϕ(X)|G] ≥ ϕ(E[X|G]), a.s.

Proof. We first prove monotonicity for conditional expectation. Claim that if X,Y are r.v. such
that E[|X|], E[|Y |] <∞ and X ≥ Y , then E[X|G] ≥ E[Y |G] a.s. To see this, set Z := E[X−Y |G]
and A := {ω : Z < 0}. Since A ∈ G by definition and (X−Y ) ≥ 0 a.s., E[Z1A] = E[(X−Y )1A] ≥
0 so P[Z < 0]] = P [E[X|G] < E[Y |G]] = 0 as claimed.

Recall that a function f : R → R is convex if and only if there exits a family {fn} of affine
functions (i.e. fn(x) = anx+ bn, for some an, bn ∈ R) such that

f(x) = sup
n
fn(x), for all x ∈ R.

Thus,
E[ϕ(X)|G] ≥ E[anX + bn|G] = anE[X|G] + bn.

By taking supremum over both sides, it follows that

E[ϕ(X)|G] ≥ sup
n
{anE[X|G] + bn} = ϕ(E[X|G]).

Lemma 1.21 (Monotone convergence theorem). Let (Xn, n ≥ 1) be a sequence of integrable
random variable such that 0 ≤ Xn ≤ Xn+1, a.s. Then

lim
n→∞

E[Xn|G] = E[ lim
n→∞

Xn|G].
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Proof. Notice that by the increasing of {Xn}n for almost all ω, we have

E[Xn|G] ≤ E[ lim
n→∞

Xn|G] a.s.

Then with the same procedure in the proof of conditional Jensen’s Inequality, we can prove that
0 ≤ E[Xn|G] ≤ E[Xn+1|G] a.s. and we get the existence of limn→∞ E[Xn|G]. Taking the limit in
the above inequality, we have

lim
n→∞

E[Xn|G] ≤ E[ lim
n→∞

Xn|G] a.s.

Then the monotone convergence theorem (Lemma 1.10) implies that

E[ lim
n→∞

E[Xn|G]] = lim
n→∞

E[E[Xn|G]] = lim
n→∞

E[Xn] = E[ lim
n→∞

Xn] = E[E[ lim
n→∞

Xn|G]].

Hence we conclude the proof.

Lemma 1.22. Let X be an integrable random variable, and G := {∅,Ω}. Then

E[X|G] = E[X].

Proof. It is equivalent to prove that any G-measurable random variable Z is a constant random
variable a.s.

By contradiction, we assume that Z is not a constant random variable. Then there exist
some constants C1, C2 ∈ R with C1 < C2 such that

{Z = C1} 6= φ, {Z = C2} 6= φ.

Hence we have {Z ≤ C1} /∈ G, which gives the fact that Z is not G-measurable. Now since this
is a contradiction, we complete the proof.

Lemma 1.23. Let X be an integrable random variable, and G1 ⊂ G2 be two sub-σ-field of F .
Then

E[E[X|G2]|G1] = E[X|G1].

Proof. Set Z := E[E[X|G2]|G1], it is enough to verify that Z satisfies the three properties in the
definition of E[X|G1].

First, Z is obviously G1-measurable and integrable, as it is defined as the conditional expec-
tation of some random variable knowing G1. Moreover, for any G1-measurable bounded random
variable Y , we know by Lemma 1.19 that

E[ZY ] = E[ E[ E[X|G2]|G1]Y ] = E[ E[ E[X|G2]Y |G1]]

= E[ E[X|G2]Y ] = E[ E[XY |G2]] = E[XY ].

This concludes the proof.
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2 Discrete time martingale

Definition 2.1. In a probability space (Ω,F ,P), a stochastic process is a family (Xn)n≥0 of
random variables indexed by time n ≥ 0 (or tn, n ≥ 0). A filtration is family F = (Fn)n≥0 of
sub-σ-field of F such that Fn ⊂ Fn+1 for all n ≥ 0.

Example 2.2. Let B = (Bn)n≥0 be some stochastic process, then the following definition of Fn
provides a filtration (Fn)n≥0:

Fn := σ(B0, B1, · · · , Bn).

In particular, let B0 = 0, Bn =
∑n

k=1 ξk where (ξk)k≥1 is an i.i.d. sequence of random variables
with distribution P[ξk = ±1] = 1

2 . Then

F0 = {∅,Ω}, F1 = F0 ∪ {A,Ac}, with A := {ξ1 = 1}, Ac = {ξ1 = −1}, · · ·

Definition 2.3. Let X = (Xn)n≥0 be a stochastic process, F = (Fn)n≥1 be a filtration.

We say X is adapted to the filtration F if

Xn ∈ Fn (i.e. Xn is Fn-measurable), for all n ≥ 0.

We say X is predictable w.r.t. F if

Xn ∈ F(n−1)∨0 for all n ≥ 0.

Remark 2.4. Let F be the filtration generated by the process B as in the above example. If X
is F-adapted, then Xn ∈ Fn = σ(B0, · · · , Bn) so that

Xn = gn(B0, · · · , Bn), for some measurable function gn.

Similarly, if X is F-predictable, then Xn+1 ∈ Fn so that

Xn+1 = g′n+1(B0, · · · , Bn), for some measurable function g′n+1.

Example 2.5. Let (ξk)k≥1 be a sequence of i.i.d random variable, such that P
[
ξk = ±1

]
= 1

2 .
Then the process X = (Xn)n≥0 defined as follows is called a random walk:

X0 = 0, Xn =

n∑
k=1

ξk.

Remark 2.6. In above examples, a stochastic process usually starts from time 0, but we can also
consider stochastic process starting from some time tk.

Definition 2.7. Let X = (Xn)n≥0 be a stochastic process, F = (Fn)n≥1 be a filtration.
We say X is a martingale (w.r.t. F) if X is F-adapted, each random variable Xn is integrable,

and
E[Xn+1|Fn] = Xn.

We say X is a sub-martingale (w.r.t. F) if X is F-adapted, each random variable Xn is
integrable, and

E[Xn+1|Fn] ≥ Xn.

We say X is a super-martingale (w.r.t. F) if X is F-adapted, each random variable Xn is
integrable, and

E[Xn+1|Fn] ≤ Xn.

11



Notice that martingale X (w.r.t. to some filtration F) is a sub-martingale, and at the same
time a super-martingale.

Example 2.8. Recall that the random walk X = (Xn)n≥0 is defined as follows:

X0 = 0, Xn =
n∑
k=1

ξk,

where (ξk)k≥1 be a sequence of i.i.d. of random variable such that P[ξ = ±1] = 1
2 .

Then

• X is a martingale;

• (X2
n)n≥0 is a sub-martingale;

• (X2
n − n)n≥0 is a martingale.

Proof. First, it is clear that X is F-adapted with respect to the natural filtration F generated by
X, and Xn is integrable for all n ≥ 0. Then by using Lemma 1.19,

E[Xn+1|Fn] = E[Xn + ξn+1|Fn]

= E[Xn|Fn] + E[ξn+1|Fn]

= Xn + E[ξn+1]

= Xn.

Next, as (X2
n)n≥0 is F-adapted, and X2

n is integrable, for ∀n ≥ 0, we compute that

E[X2
n+1|Fn] = E[(Xn + ξn+1)2|Fn]

= E[X2
n + 2Xnξn+1 + ξ2

n+1|Fn]

= E[X2
n|Fn] + 2E[Xnξn+1|Fn] + E[ξ2

n+1|Fn]

= X2
n + 2XnE[ξn+1|Fn] + E[ξ2

n+1]

= X2
n + 1.

Finally, Yn := X2
n − n is F-adapted, and Yn is integrable, then

E[Yn+1|Fn] = E[X2
n+1 − (n+ 1)|Fn]

= X2
n + 1− (n+ 1)

= X2
n − n

= Yn.

Example 2.9. Let (Zk)k≥1 be a sequence of random variable such that Zk ∼ N(0, 1), and σ ∈ R,
X0 ∈ R be real constants. Let Fn := σ(Z1, · · · , Zn), and

Xn := X0 exp
(
σ

n∑
k=1

Zk −
1

2
nσ2

)
.

Then (Xn)n≥1 is a martingale (w.r.t. F).
12



Example 2.10. Let F = (Fn)n≥1 be a filtration, Z be an integrable random variable, and

Xn := E
[
Z
∣∣Fn].

Then (Xn)n≥1 is a martingale (w.r.t. F).

Lemma 2.11. Let F be a filtration, and X be a martingale w.r.t. F. Let FX denote the natural
filtration generated by X. Then X is also a martingale w.r.t. FX .

Proof. Given that X is F-adapted, we know that Xs ∈ Fn for s ∈ {0, 1, · · · , n}. Define FXn as
the σ-field generated by X0, X1, · · · , Xn, i.e. FXn := σ(X0, X1, · · · , Xn), then FXn ⊂ Fn. We
know that X is FX -adapted, Xn is integrable for ∀n ≥ 0, and

E[Xn+1|FXn ] = E[ E[ Xn+1|Fn]|FXn ] = E[Xn|FXn ] = Xn,

then it is clear that X is a martingale with respect to FX .

Notice that a martingale X is associated to some filtration F. However, when the filtration is
not specified, we say X is a martingale means that X is a martingale w.r.t. the natural filtration
generated by X. In this case, we can also write

E
[
Xn+1

∣∣X0, · · · , Xn

]
= Xn, for all n ≥ 0.

Lemma 2.12. Let X be a martingale w.r.t. the filtration F, then

E
[
Xm

∣∣Fn] = Xn, for all m ≥ n ≥ 0.

Moreover,
E
[
Xn

]
= E

[
X0

]
, for all n ≥ 0.

Proof. As X is a martingale, we know that E[Xn+1|Fn] = Xn and Fn ⊂ Fn+1. Then by the
tower property in Lemma 1.23,

E[Xn+2|Fn] = E[ E[ Xn+2|Fn+1]|Fn] = E[Xn+1|Fn] = Xn.

The result follows by using the above equation.

2.1 Optional stopping theorem

Definition 2.13. Let F be a filtration, a stopping time w.r.t. F is a random variable τ : Ω −→
{0, 1, · · · } ∪ {∞} such that

{τ ≤ n} ∈ Fn, for all n ≥ 0. (2)

Remark 2.14. In place of (2), it is equivalent to define the stopping time by the property:

{τ = n} ∈ Fn, for all n ≥ 0.

Proof. We can write

{τ = n} = {τ ≤ n} \ {τ ≤ n− 1}, (3)

{τ ≤ n} =

n⋃
k=0

{τ = k}. (4)

Now if {τ ≤ n} ∈ Fn for any n ≥ 0, then {τ ≤ n − 1} ∈ Fn−1 ⊂ Fn, hence we know from (3)
that {τ = n} ∈ Fn.

Next, if {τ = n} ∈ Fn for any n ≥ 0, then for any 0 ≤ k ≤ n, {τ = k} ∈ Fk ⊂ Fn, hence we
know from (4) that {τ ≤ n} ∈ Fn.
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Lemma 2.15. Let X be a stochastic process adapted to the filtration F, and B be a Borel set in
R. Then the hitting time τ defined below is a stopping w.r.t. F:

τ := inf{n ≥ 0 : Xn ∈ B},

where inf ∅ = +∞ by convention.

Proof. For any n ∈ N, notice the facts that

{τ = n} = {Xn ∈ B}
⋂ n−1⋂

k=0

{Xk /∈ B},

{τ ≤ n} =
n⋃
k=0

{Xk ∈ B},

{Xk ∈ B} ∈ Fk ⊂ Fn for any k = 0, 1, · · · , n.

It follows that {τ ≤ n} ∈ Fn for any n ≥ 0. Then τ is a stopping time w.r.t. F.

Given a stochastic process X and a stopping time τ w.r.t. some filtration F.

Xτ∧n(ω) :=

{
Xn(ω) if τ(ω) ≥ n,
Xτ(ω)(ω) if τ(ω) < n.

Theorem 2.1. Let F be fixed filtration, X be a F-martingale, and τ be a F-stopping time. Then
the process (Xτ∧n)n≥0 is still a F-martingale.

Proof. Let us denote Yn := Xτ∧n for any n ∈ N, then we can write for any n ≥ 0,

Yn =

n−1∑
k=0

Xk1{τ=k} +Xn1{τ≥n}, (5)

=
n−1∑
k=0

Xk1{τ=k} +Xn1{τ>n−1}, (6)

Now we verify the three conditions in the definition of martingale.
First, for any n ∈ N, we have by (5)

|Yn| ≤
n∑
k=0

|Xk|.

Then by the integrability of X, we know that

E[|Yn|] ≤
n∑
k=0

E[|Xk|] < +∞.

Next, since τ is a F-stopping time, we have for any k = 0, 1, · · · , n,

{τ = k} ∈ Fk ⊂ Fn, {τ > n− 1} = {τ ≤ n− 1}C ∈ Fn−1 ⊂ Fn.

Then Xk1{τ=k} is Fk-measurable, hence Fn-measurable and Xn1{τ>n−1} is also Fn-measurable.
Thus by (5), we have Yn is Fn-measurable.
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Finally, we prove that for any n ∈ N

E[Yn+1|Fn] = Yn a.s.

By (5), we have

E[Yn+1|Fn] = E[
n∑
k=0

Xk1{τ=k} +Xn+11{τ>n}|Fn] =
n∑
k=0

Xk1{τ=k} + E[Xn+1|Fn]1{τ>n}

=
n−1∑
k=0

Xk1{τ=k} +Xn1{τ>n} = Yn a.s.

When X is martingale and τ is a stopping w.r.t. the same filtration, it follows that

E
[
Xτ∧n

]
= E

[
X0

]
.

The question is that whether one has E[Xτ ] = E[X0].
In order to answer the question, we introduce a version of the dominated convergence theorem

below.

Lemma 2.16. Let {Zn}n≥0 be a sequence of random variables with limn→∞ Zn = Z a.s. for
some random variable Z and supn∈N |Zn| ≤M a.s. for some constant M > 0, then

lim
n→∞

E[Zn] = E[Z].

Proof. Let us denote that Xn = infk≥n(2M − |Zk − Z|) for any n ∈ N, then it is clear that
0 ≤ Xn ≤ Xn+1 for all n ≥ 1 and limn→∞Xn = 2M a.s.

By Lemma 1.10, we have

lim
n→∞

E[Xn] = E[ lim
n→∞

Xn] = 2M,

Then we know that

lim
n→∞

E[|Zn − Z|] ≤ lim
n→∞

E
[

sup
k≥n
|Zk − Z|

]
= − lim

n→∞
E
[

inf
k≥n

(2M − |Zk − Z|)− 2M
]

= − lim
n→∞

E
[

inf
k≥n

(2M − |Zk − Z|)
]

+ 2M = − lim
n→∞

E[Xn] + 2M

= − E
[

lim
n→∞

Xn

]
+ 2M = − E

[
lim
n→∞

inf
k≥n

(2M − |Zk − Z|)
]

+ 2M

= − E[2M ] + 2M = 0.

Hence, we have
lim
n→∞

E[Zn] = E[Z].

Theorem 2.2. Let F be a fixed filtration, X be a F-martingale, and τ be a F-stopping time.
Assume that τ is bounded by some constant m ≥ 0, or τ < ∞ and the process (Xτ∧n)n≥0 is
uniformly bounded. Then

E
[
Xτ

]
= E

[
X0

]
.
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Proof. First, we claim that
lim
n→∞

E[Xτ∧n] = E[Xτ ]. (7)

By Theorem 2.1, we have Xτ∧· is a F-martingale, then for any n ∈ N,

E[Xτ∧n] = E[X0],

which combined with (7), implies that

E[Xτ ] = E[X0].

Then it remains to prove the claim (7).
If τ is bounded by some constant m ≥ 0, then for any n ≥ m, we have Xτ∧n = Xτ , hence

(7) remains true.
If (Xτ∧n)n≥0 is uniformly bounded, by Lemma 2.16 and limn→∞Xτ∧n = Xτ a.s., (7) remains

true.

Example 2.17. Let (ξk)k≥1 be a sequence of i.i.d. random variables, x ∈ N be a positive integer,
and

Xn := x+
n∑
k=1

ξk.

Let us define
τ := inf

{
n ≥ 0 : Xn ≤ 0 or Xn ≥ N

}
.

Assume τ <∞, we can then compute the value of E
[
Xτ

]
and P

[
Xτ = 0

]
.

2.2 Convergence of martingale

Theorem 2.3. Let X be a submartingale or supermartingale such that supn≥0 E[|Xn|] < ∞.
Then

lim
n→∞

Xn = X∞, for some r.v. X∞ ∈ L1.

Proof. We will prove the case when X is a supermartingale, and the submartingale case follows
by taking −X as a supermartingale. Recall that the limit of a sequence of real numbers (Xn)n≥1

does not exist if and only if one of the following holds:

1. limn→∞Xn =∞

2. limn→∞Xn = −∞

3. limn→∞Xn < limn→∞Xn.

Set A1 = {ω : limn→∞Xn(ω) = +∞}, A2 = {ω : limn→∞Xn(ω) = −∞}, A3 = {ω :
limn→∞Xn(ω) < + limn→∞Xn(ω)}. If P[A1] = P[A2] = P[A3] = 0, then the result follows.

Given ε > 0, we first assume that P[A1] ≥ ε > 0. Then ∀M > 0,∃N such that Xn ≥ M
for ∀n ≥ N . We know that E[|Xn|] ≥ E[|Xn|1A1 ] ≥ Mε > C for large enough M , where
C = supn≥0 E[|Xn|]. This leads to a contradiction that C = supn≥0 E[|Xn|] < ∞ and we can
conclude that P[A1] = 0. Similarly, we can prove P[A2] = 0.

16



To show P [A3] = 0, choose two rational numbers a and b such that limn→∞Xn ≤ a < b ≤
limn→∞Xn, we introduce two sequences of stopping times (σn)n≥1, (τn)n≥1 by:

σ1 := inf{n ≥ 1 : Xn ≤ a}
τ1 := inf{n ≥ σ1 : Xn ≥ b}
σ2 := inf{n ≥ τ1 : Xn ≤ a}
τ2 := inf{n ≥ σ2 : Xn ≥ b}.

It can be observed that at time τ1, the process X has crossed [a, b] once, and at time τ2, the
process X has crossed [a, b] twice. Let Un(a, b) := max{k : τk ≤ n}.

Claim that E[Un(a, b)] ≤ E[|Xn−a|]
b−a . If this holds, then supn≥1 E[Un(a, b)] ≤ supn≥1

E[|Xn−a|]
b−a .

We know by Monotone Convergence Theorem that

E[ lim
n→∞

Un(a, b)] = lim
n→∞

E[Un(a, b)] ≤ sup
n≥1

E[|Xn − a|]
b− a

<∞.

Thus limn→∞ Un(a, b) <∞ a.s., and P [ limn→∞Xn ≤ a < b ≤ limn→∞Xn ] = 0. We then find
from subadditivity that

P[A3] = P[ lim
n→∞

Xn ≤ lim
n→∞

Xn ]

= P[∪ a<b
a,b∈Q

{ lim
n→∞

Xn ≤ a < b ≤ lim
n→∞

Xn}]

≤
∑
a<b
a,b∈Q

P[ lim
n→∞

Xn ≤ a < b ≤ lim
n→∞

Xn]

= 0.

Finally, we prove E[Un(a, b)] ≤ E[|Xn−a|]
b−a . LetHk :=

∑∞
i=1 1σi≤k<τi and Vn :=

∑n−1
k=0 Hk(Xk+1−

Xk). We claim that V = (Vn)n≥1 is a supermartingale. Indeed,

E[Vn+1 − Vn|Fn] = HnE[Xn+1 −Xn|Fn] ≤ 0.

Thus we know that Vn ≥ (b − a) · Un(a, b) − |Xn − a| by taking the first term and the second
term as profit from the crossing event and loss of the last investment, respectively. Then

0 ≥ E[Vn] ≥ E[(b− a)Un(a, b)]− E[|Xn − a|].

We obtain the desired result.

Theorem 2.4. Let X be a martingale such that supn≥0 E[|Xn|2] <∞. Then

lim
n→∞

Xn = X∞, for some r.v. X∞ ∈ L2.

and
lim
n→∞

E[|Xn −X∞|2] = 0.

Proof. Recall from Cauchy-Schwarz inequality that supn≥1 E[|Xn|] ≤ supn≥1

√
E[|Xn|2] ≤ ∞.

Then limn→∞Xn exists by 2.3.

17



We first denote that ∆Xn := Xn −Xn−1, n ≥ 1. We claim that

E[X2
n] = E[X2

0 ] +
n∑
k=1

E[∆X2
n].

Indeed, Xn = X0 + ∆X1 + · · ·+ ∆Xn, then

X2
n = X2

0 + ∆X2
1 + · · ·+ ∆X2

n +
∑
i 6=j

1≤i,j≤n

∆Xi∆Xj +
n∑
i=1

2X0∆Xi

and

E[X0∆Xi] = E[E[X0∆Xi|Fi−1]]

= E[X0E[∆|Fi−1]]

= 0.

Let i < j, we know that

E[∆Xi∆Xj ] = E[E[∆Xi∆Xj |Fj−1]]

= E[∆XiE[∆Xj |Fj−1]]

= 0.

Thus,

lim
n→∞

E[X2
n] = E[X2

0 ] +
∞∑
k=1

E[∆X2
k ] ≤ C ≤ +∞

where C := supn≥1 E[|Xn|2] <∞. Therefore, for m > n,

E[(Xm −Xn)2] = E[(

m∑
k=n+1

∆Xk)
2]

= E[
m∑

k=n+1

∆X2
k ] + E[

∑
i 6=j

n+1≤i,j≤m

∆Xi∆Xj ]

=
m∑

k=n+1

E[∆X2
k ]→ 0, as m,n→∞.

Then (Xn)n≥1 is a Cauchy sequence in L2 space. From the completeness of L2, we know by 1.9
that Xn converges to X∞ in L2 space, i.e. limn→∞ E[|Xn −X∞|2] = 0.

Application I: Law of large number

Theorem 2.5 (Law of large number). Let (ξk)k≥1 be a sequence of i.i.d. random variables, such
that E[|ξi|] <∞. Then

1

n

n∑
k=1

ξk −→ E
[
X1

]
, a.s.

In the following, we will use the theorem of convergence of martingale to prove the above
theorem (law of large number).
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Lemma 2.18 (Kronecker). Let (xn)n≥1 be a sequence of real numbers such that

lim
n→∞

n∑
k=1

k−1xk exists.

Then
1

n

n∑
k=1

xk −→ 0.

Proof. Let mn :=
∑n

k=1 k
−1xk for all n ≥ 1, let us denote m∞ := limn→∞mn. Notice that

lim
n→∞

1

n

n∑
k=1

mk = m∞, and
n∑
k=1

mk = (n+ 1)mn −
n∑
k=1

xk.

It follows immediately that limn→∞
1
n

∑n
k=1 xk = 0.

Proof of Theorem 2.5. In view of Kronecker’s Lemma, it is enough to assume in addition that
E[X1] = 0 and then prove that

lim
n→∞

∞∑
k=1

k−1Xk, exists a.s. (8)

Let us define

Mn :=
n∑
k=1

k−1Xk, n ≥ 1.

Since it is assumed that E[Xk] = 0, we observe that (Mn)n≥1 is a martingale.

(i) When X1 is square integrable, i.e. E[|X1|2] <∞, we obtain that

E
[
|Mn|2

]
=

n∑
k=1

1

k2
E
[
|Xk|2

]
= E[|X1|2]

n∑
k=1

1

k2
.

By the theorem of convergence of martingale, it follows that there exists a square-integrable
random variable M∞ such that

lim
n→∞

Mn = M∞, a.s.

and we hence conclude of the proof of (8).

(ii) When we only have E[|X1|] <∞, let us define

Yn := Xn1{|Xn|≤n}, n ≥ 1.

Then ∑
n≥1

P[Xn 6= Yn] =
∑
n≥1

P[|X1| > n] = E
[∑
n≥1

1{|X1|>n} ≤ E
[
|X1|

]
<∞.

By Borel-Cantelli, il follows that there exists a random variable M such that

Xn = Yn, for all n ≥M, a.s.

Therefore, whenever the last two limits below exist, one has

lim
n∞

1

n

n∑
k=1

Xk = lim
n∞

1

n

n∑
k=1

Yk = lim
n∞

1

n

n∑
k=1

E[Yk] + lim
n∞

1

n

n∑
k=1

(
Yk − E[Yk]

)
.
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By the definition of Yk, we notice that limk→∞ E[Yk] = E[X1] = 0, so that

lim
n∞

1

n

n∑
k=1

E[Yk] = 0.

To study the last limit, let us define Zn := n−1(Yn − E[Yn]) and claim that

∞∑
n=1

E
[
|Zn|2

]
<∞. (9)

Then by the arguments in Item (i), we conclude that

lim
n∞

1

n

n∑
k=1

(
Yk − E[Yk]

)
= 0,

which implies the requires result in the statement.

To finish the proof, it is enough to prove the claim in (9). In fact, we notice that∑
n≥1

E
[
|Zn|2

]
=
∑
n≥1

n−2Var[Yn] ≤
∑
n≥1

n−2E[|Yn|2] = E
[
X2

1

∑
n≥1

n−21{|X1|≤n}

]
= E

[
X2

1f(|X1|)
]
,

where f(x) :=
∑

x≤n n
−2 satisfies that, for some constant C > 0, f(x) ≤ Cx−1 for all x ≥ 0.

Therefore, ∑
n≥1

E
[
|Zn|2

]
≤ E

[
X2

1f(|X1|)
]
≤ CE

[
|X1|

]
<∞,

which proves (9) and hence concludes the proof.

Application II: Stochastic Gradient Algorithm Let (Xk)k≥1 be a sequence of i.i.d. ran-
dom variables with the same law of X. Then we give the stochastic gradient algorithm

θk+1 = θk − γk+1F (θk, Xk+1), ∀k ∈ N. (10)

where F : Rd × R→ Rd satisfies E[F (θ,X)] = f(θ).
To make the algorithm converges, we make the following assumptions:

Assumption 2.6. • γk > 0,
∑∞

k=1 γk = +∞,
∑∞

k=1 γ
2
k < +∞

• There exists a point θ∗ ∈ Rd such that

〈θk − θ∗, f(θk)〉 > 0, ∀ θk 6= θ∗.

• F is uniformly bounded by some constant C > 0.

Theorem 2.7. Given F : Rd × R → Rd, f : Rd → Rd, θ0 ∈ R and constants {γk}k≥1, we
define a sequence of random variables {θk}k≥1 by (10) iteratively, then under Assumption 2.6,
limk→∞ θk = θ∗ a.s.

Remark 2.19. If g : Rd → R is strictly convex, θ∗ is the minimizer of g(θ), then for any θ 6= θ∗,
〈θ − θ∗,∇g(θ)〉 > 0.
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Proof. Let us define the F-predictable process (Sn)n≥0 by

Sn :=

n−1∑
k=0

γ2
k+1E

[
|F (θk, Xk+1)|2

∣∣Fk],
where F0 := {φ,Ω}, Fk := σ(X1, · · · , Xk) for any k ≥ 1 and F := (Fk)k≥0. Then by the
uniformly boundedness of F , we have

Sn ≤
n−1∑
k=0

γ2
k+1C

2 ≤ C2
∞∑
k=0

γ2
k+1.

Hence by the martingale convergence theorem, we know the existence of S∞ := limn→∞ Sn and

S∞ =
∞∑
k=0

γ2
k+1E

[
|F (θk, Xk+1)|2

∣∣Fk] ≤ C2
∞∑
k=0

γ2
k+1 a.s.

Next, we define the adapted process (Zn)n≥0 by Zn := |θn − θ∗|2 − Sn for any n ∈ N and we
claim that (Zn)n≥0 is a F-supermartingale. First, observe that

E[|Zn|] ≤ E[|Sn|+ 2|θ∗|2 + 2|θn|2]

≤ C2
∞∑
k=0

γ2
k+1 + 2|θ∗|2 + 2E

[∣∣∣∣θ0 +
n−1∑
k=0

γk+1F (θk, Xk+1)

∣∣∣∣2]

≤ C2
∞∑
k=0

γ2
k+1 + 2|θ∗|2 + 4|θ0|2 + 4nE[|Sn|]

≤ (4n+ 1)C2
∞∑
k=0

γ2
k+1 + 2|θ∗|2 + 4|θ0|2 <∞.

Next, for any n ∈ N,

E[Zn+1|Fn] = E[|θn+1 − θ∗|2 − Sn+1|Fn]]

= − Sn+1 + |θn − θ∗|2 + E[|γn+1F (θn, Xn+1)|2|Fn]

− 2E[〈θn − θ∗, γn+1F (θn, Xn+1)〉|Fn]

= − Sn+1 + |θn − θ∗|2 + E[|γn+1F (θn, Xn+1)|2|Fn]− 2γn+1〈θn − θ∗, f(θn)〉
≤ − Sn+1 + |θn − θ∗|2 + E[|γn+1F (θn, Xn+1)|2|Fn]

= Zn a.s.

Now let K := C2
∑∞

k=0 γ
2
k+1, we have (Zn +K)n≥0 is a positive supermaringale and

sup
n≥0

E[|Zn +K|] = sup
n≥0

E[Zn +K] ≤ E[Z0 +K] < ∞.

By the martingale convergence theorem, if follows that

lim
n→∞

Zn +K = Z∞ +K, for some r.v. Z∞ ∈ L1.

Then let L := S∞ + Z∞, we know that

lim
n→∞

|θn − θ∗|2 = L a.s.
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and we claim that L = 0 a.s.
Let Aδ := {ω : L(ω) > δ}, then it is sufficient to prove that P[Aδ] = 0 for any δ > 0.
We assume by contradiction that P[Aδ] > 0, then η := infδ≤|θk−θ∗|2≤2L〈θk − θ∗, f(θk)〉 > 0

on Aδ, and we have

∞∑
k=0

γk+1〈θk − θ∗, f(θk)〉 ≥
∞∑
k=0

γk+1η = +∞, on Aδ.

Then the monotone convergence theorem gives that

∞∑
k=0

E[γk+1〈θk − θ∗, f(θk)〉] = +∞.

However, by the definition of the algorithm, we have

∞∑
k=0

E[γk+1〈θk − θ∗, f(θk)〉]

=
∞∑
k=0

E[〈θk − θ∗, γk+1F (θk, Xk+1)〉]

=
1

2

∞∑
k=0

E
[
|θk+1 − θ∗|2 − |θk − θ∗|2 − |γk+1F (θk, Xk+1)|2

]
=

1

2

(
lim
n→∞

E
[
|θk − θ∗|2

]
− E

[
|θ0 − θ∗|2

]
−
∞∑
k=0

γ2
k+1E

[
|F (θk, Xk+1)|2

])
=

1

2
E[S∞ + Z∞ − |θ0 − θ∗|2 − S∞]

=
1

2
E[Z∞ − |θ0 − θ∗|2] <∞.

Now we have a contradiction and complete the proof.
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3 Discrete time Markov chain

3.1 Definition and examples

Let us recall that a stochastic process X = (Xk)k≥0 is a family of random variables indexed by
time k ≥ 0. In this section, we consider the case that X takes value in a countable state space
S.

Remark 3.1. The state space S could be finite, e.g. S = {x1, · · · , xn}, or infinite, e.g. S =
N = {0, 1, 2, · · · }.

Definition 3.2. A stochastic process X = (Xn)n≥0 taking value in a countable space S is called
a Markov chain if, for all x0, x1, · · · , xn, xn+1 ∈ S, one has

P
[
Xn+1 = xn+1

∣∣Xn = xn, · · · , X0 = x0

]
= P

[
Xn+1 = xn+1

∣∣Xn = xn
]
.

Example 3.3 (Random walk). Let (ξk)k≥1 be a sequence of i.i.d. random variables such that

P[ξ1 = 1] = p, P[ξ1 = −1] = 1− p.

Let

Xn :=
n∑
k=1

ξk, n ≥ 0.

One observes that X takes value in Z, and one can compute that

E
[
f(Xn+1)

∣∣Xn = xn, · · · , X1 = x1

]
= pf(xn + 1) + (1− p)f(xn − 1),

and
E
[
f(Xn+1)

∣∣Xn = xn
]

= pf(xn + 1) + (1− p)f(xn − 1).

Thus, (Xn)n≥0 is a Markov chain.

Notice also that, when p = 1
2 , (Xn)n≥0 is a martingale.

Proposition 3.4. A process X is a Markov chain if and only if

E
[
f(Xn+1)

∣∣Fn] = E
[
f(Xn+1)

∣∣Xn

]
,

for all bounded function f : S −→ R, where Fn := σ(X0, · · · , Xn).

Proof. to be completed.

Definition 3.5. A Markov chain X is called homogeneous if

P[Xn+1 = y|Xn = x] = P[X1 = y|X0 = x], for all n ≥ 0, x, y ∈ S.

In the following, we will only consider homogeneous Markov chain !

Definition 3.6. Let X be a Markov chain.

(i) For all x, y ∈ S, P (x, y) := P[Xn+1 = y|Xn = x] is called the transition probability from x to
y.

(ii) The matrix P = (P (x, y))x,y∈S is then called the transition matrix.

(iii) The vector µ = (µ(x))x∈S defined by µ(x) := P[X0 = x] is the initial distribution of X.
23



Example 3.7. (i) Ranom walk.

(ii) Gambler’s ruin.

(iii) Ehrenfest model.

Remark 3.8. Let us recall that

P[A|B] =
P[A ∩B]

P[B]
⇐⇒ P[A ∩B] = P[A|B]P[B].

Proposition 3.9 (Chapman-Kolmogorov Equation). Let X be a Markov chain with transition
matrix P . Then the joint law of (X0, X1, · · · , Xn) is given by

P[X0 = x0, · · · , Xn = xn] = P[X0 = x0]P (x0, x1) · · ·P (xn−1, xn).

Proof. to be completed.

Lemma 3.10. One has

P[X0 = x0, Xn = xn] = P[X0 = x0]Pn(x0, xn)

and
P[Xm+n = y|X0 = x] = Pm+n(x, y).

Proof. to be completed.

3.2 Recurrence, transience

Let us consider a Markov chain X = (Xn)n≥0, with state space S = {x1, x2, · · · } and transition
matrix P . Let us use the notation

Px[A] := P[A|X0 = x].

Definition 3.11. A state x ∈ S is communicate with state y ∈ S, denoted by x→ y, if

Px[τy <∞] = P[τy <∞|X0 = x] > 0,

where τy := min{n ≥ 0 : Xn = y}.

Notice that τy <∞ means that Xn = y for some n ≥ 0; and τy =∞ means that Xn 6= y for
all n ≥ 0.

Proposition 3.12. For x, y ∈ S, one has x→ y if and only if Pn(x, y) > 0 for some n ≥ 0.

Proof. (i) If x→ y so that Px[τy <∞] > 0, then

0 < Px[τy <∞] = Px
[
∪n≥0 {τy ≤ n}

]
= lim

n→∞
Px[τy ≤ n],

since {τy ≤ n} ⊂ {τy ≤ n+ 1}. Thus, there exists some n ≥ 0 such that

Px
[
τy ≤ n

]
> 0.

Further, as {τy ≤ n} = ∪nk=0{τy = k}, then for some k ≥ 0, one has

Px
[
τy = k

]
> 0.
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Therefore,

P k(x, y) = Px
[
Xk = y

]
≥ Px

[
X0 = x,X1 6= y, · · · , Xk−1 6= y,Xk = y

]
= Px[τy = k] > 0.

(ii) Next, if Pn(x, y) > 0 for some n ≥ 0, then

Px[τy <∞] ≥ Px[τy ≤ n] ≥ Px[Xn = y] = Pn(x, y) > 0.

Hence x→ y.

Proposition 3.13. Let x, y, z ∈ S, then

• x→ x;

• x→ y and y → z implies that x→ z.

Proof. (i) By its definition, one has τx := min{n ≥ 0 : X0 = x} = 0 <∞, Px-a.s. so that x→ x.

(ii) If x → y and y → z, then there exist m ≥ 0 and n ≥ 0 such that Pm(x, y) > 0 and
Pn(y, z) > 0. Then Pm+n(x, z) ≥ Pm(x, y)Pn(y, z) > 0, and hence x→ z.

Definition 3.14. (i) Let x, y ∈ S, we say x and y are intercommunicate, denoted by x ↔ y, if
x→ y and y → x.

(ii) A subset B ⊂ S is called irreducible if x↔ y for all x, y ∈ B.

(iii) If S itself is irreducible, we say that the Markov chain is irreducible, or the transition matrix
P is irreducible.

Example 3.15. (i) Ranom walk.

(ii) Gambler’s ruin.

(iii) Ehrenfest model.

Let us denote by Nx the number of times that X stays at point x ∈ S, i.e.

Nx :=

∞∑
n=0

1{Xn=x}.

Further, let
τ1
x := min{n ≥ 1 : Xn = x}.

Definition 3.16. (i) We say x ∈ S is recurrent if Px[τ1
x <∞] = 1.

(ii) We say x ∈ S is transiant if Px[τ1 <∞] < 1.

Remark 3.17. Notice that

τ1
x =∞, Px-a.s. ⇐⇒ Nx = 1, Px-a.s.

Theorem 3.1. (i) If x is recurrent, i.e. Px[τ1
x <∞] = 1. Then Px[Nx =∞] = 1.

(ii) If x is transient, i.e. α := Px[τ1
x = ∞] = 1 − Px[τ1

x < ∞] > 0. Then Px[Nx = n] =
α(1− α)n−1, for all n ≥ 1. Consequently, Ex[Nx] = 1/α.
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Lemma 3.18. Let τn+1
x := min{k ≥ τnx + 1 : Xk = x}, with τ0

x ≡ 0. Then for any k1 < k2 <
· · · < kn+1, one has

Px
[
τ1
x = k1, τ

2
x = k2, · · · , τn+1

x = kn+1

]
= Px

[
τ1
x = k1, · · · , τnx = kn

]
Px
[
τ1
x = kn+1 − kn

]
. (11)

Consequently, (τn+1
x − τnx )n≥0 is an i.i.d. sequence of random variables.

Proof. We only provide the proof for the case n = 1, where the proof for the general case n > 1
is almost the same, but with more heavy notations.

Px
[
τ1
x = k1, τ

2
x = k2

]
= Px

[
X0 = x,X1 6= x, · · · , Xk1−1 6= x,Xk1 = x,Xk1+1 6= x, · · · , Xk2−1 6= x,Xk2 = x

]
= Px

[
X0 = x,X1 6= x, · · · , Xk1−1 6= x,Xk1 = x

]
· Px

[
Xk1 = x,Xk1+1 6= x, · · · , Xk2−1 6= x,Xk2 = x

∣∣X0 = x,X1 6= x, · · · , Xk1−1 6= x,Xk1 = x
]

= Px
[
X0 = x,X1 6= x, · · · , Xk1−1 6= x,Xk1 = x

]
· Px

[
Xk1 = x,Xk1+1 6= x, · · · , Xk2−1 6= x,Xk2 = x

∣∣Xk1 = x
]

= Px
[
τ1
x = k1

]
Px
[
τ1
x = k2 − k1

]
.

This proves (11) for the case n = 1.

Next, notice that

Px
[
τ1
x = k1, τ

2
x = k2

]
= Px

[
τ1
x = k1, τ

2
x − τ1

x = k2 − k1

]
= Px

[
τ1
x = k1

]
Px
[
τ2
x − τ1

x = k2 − k1

∣∣τ1
x = k1

]
.

This implies that, for all k1 ≥ 1,

Px
[
τ1
x = n1

]
= Px

[
τ2
x − τ1

x = n1

∣∣τ1
x = k1

]
, Px-a.s.

Hence τ2
x − τ1

x is independent of τ1
x and has the same distribution as τ1

x .

Proof of Theorem 3.1. Let α := Px
[
τ1
x =∞

]
, we claim that

Px
[
Nx > n

]
= Px

[
τ1
x <∞

]2
= (1− α)n.

Indeed, as {Nx > n} = {τnx <∞}, one then has

Px
[
Nx > n

]
= Px

[
τnx <∞

]
= Px

[
τ1
x <∞, τ2

x − τ1
x <∞, · · · , τnx − τn−1

x <∞
]
.

Applying Lemma 3.18, it follows that

Px
[
Nx > n

]
= Px

[
τ1
x <∞

]2
= (1− α)n.

When x is recurrent, i.e. Px[τ1
x <∞] = 1, and hence α = 0, one has Px

[
Nx > n

]
= 1 for all

n ≥ 1. Thus Px
[
Nx =∞

]
= 1.

When x is transient so that α > 0, one has

Px
[
Nx = n

]
= Px

[
Nx > n− 1

]
− Px

[
Nx > n

]
= (1− α)n−1 − (1− α)n = α(1− α)n−1.

We hence conclude the proof.
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Proposition 3.19. The state x ∈ S is recurrent if and only if

∞∑
n=0

Pn(x, x) =∞.

Proof. If x is recurrent, then Px
[
Nx = ∞

]
= 1 and hence Ex

[
Nx

]
= ∞. If x is transient, then

Ex[Nx] = 1/α with α := Px[τ1
x = ∞] > 0. Therefore, one has x is recurrent if and only if

Ex
[
Nx

]
=∞.

By direct computation, one has

Ex
[
Nx

]
= Ex

[ ∞∑
n=0

1{Xn=x}

]
=

∞∑
n=0

Ex
[
1{Xn=x}

]
=

∞∑
n=0

Px
[
Xn = x

]
=

∞∑
n=0

Pn(x, x).

Therefore, x is recurrent if and only if
∑∞

n=0 P
n(x, x) =∞.

Example 3.20. Let us consider the random walk (Xn)n≥0, with Xn :=
∑n

k=1 ξk, where (ξk)k≥1

is an i.i.d. sequence of random variable such that P[ξ1 = 1] = p and P[ξ1 = −1] = 1 − p, for
some p ∈ [0, 1].

(i) When p = 1
2 , one has

P[X2n = 0] = Cn2n2−2n =
(2n)!

n!n!
2−2n.

By Stirling formula: n! ≈
√

2πn(ne )n, it follows that

P[X2n = 0] ≈ 1√
πn

, and hence
∞∑
n=0

Pn(0, 0) =∞.

Therefore, X is recurrent when p = 1
2 .

(ii) When p 6= 1
2 , we compute that

P0[X2n = 0] = Cn2np
n(1− p)n ≈ (4p(1− p))n√

πn
≈ 1√

π
n−1/2αn,

where α := 4p(1− p) < 1. Therefore, X is transient when p 6= 1
2 .

Definition 3.21. (i) A set B ⊂ S is called a class if it is irreducible and there does not exist a
couple (x, y) such that x ∈ B, y /∈ B and x↔ y.

(ii) A set B ⊂ S is closed if there is no (x, y) such that x ∈ B, y /∈ B and x→ y.

(iii) A state x ∈ S is absorbing if {x} is closed.

(iv) Let x ∈ S, the period of x, denoted by d(x), is the greatest common denominator of the
return time set

R(x) := {n ∈ N : Pn(x, x) > 0}.

We use the convention that d(x) = 1 if R(x) = ∅.

We say that the state x ∈ S is aperiodic if d(x) = 1.

Proposition 3.22. Let x↔ y. Then x and y are both recurrent or both transient.
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Proof. As x ↔ y, there exists k, ` ≥ 0 such that P k(x, y) > 0 and P `(y, x) > 0, so that
α := P k(x, y)P `(y, x) > 0. Then

P k+n+`(x, x) ≥ P k(x, y)Pn(y, y)P `(y, x) = αPn(y, y).

Assume that x is transient so that
∑∞

n=0 P
n(x, x) <∞. Then∑

n≥0

Pn(y, y) ≤ 1

α

∑
n≥0

Pn+k+`(x, x) <∞,

and hence y is also transient.

If x is recurrent, then y cannot be transient. Otherwise, if y is transient then x must also be
transient, which contradicts the fact that x is recurrent. Therefore, y must also be recurrent.

Remark 3.23. Let x↔ y. By the same arguments,

x and y are transient ⇐⇒
∞∑
n=0

Pn(y, x) <∞.

Proposition 3.24. Let X be a Markov chain with a finite state space X. Then there exists a
state x ∈ S which is recurrent.

Consequently, if X is in addition irreducible, then every state is recurrent.

Proof. Let us fix y ∈ S, then∑
x∈S

∑
n≥0

Pn(y, x) =
∑
n≥0

∑
x∈S

Py[Xn = x] =
∑
n≥0

Py[Xn ∈ S] =∞.

When S is finite, there must be some x ∈ S such that∑
n≥0

Pn(y, x) =∞.

Next, let us denote

Qm(y, x) := Py
[
X0 = y,X1 6= x, · · · , Xm−1 6= x,Xm = x

]
= Py[τ1

x = m].

Then ∑
n≥0

Pn(y, x) =
∑
n≥0

n∑
m=1

Qm(y, x)Pn−m(x, x) =
∑
m≥0

∞∑
n=m

Qm(y, x)Pn−m(x, x)

=
∑
m≥0

∑
n≥0

Qm(y, x)Pn(x, x) =
(∑
m≥0

Qm(y, x)
)(∑

n≥0

Pn(x, x)
)
.

As
∑

n≥0 P
n(y, x) = ∞ and

∑
m≥0Q

m(y, x) ≤ 1, we must have
∑

n≥0 P
n(x, x) = ∞. Hence x

is recurrent.

Remark 3.25. For a class B ⊂ S, either all states in B are recurrent, or all states in B are
transient.

Proposition 3.26. Let B ⊂ S be a recurrent class, then B is closed.
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Proof. If B is not closed, then there exists a couple (x, y) ∈ S × S such that

x ∈ B, x /∈ B, x→ y and y 9 x.

Since x→ y, one has α := Px
[
τ1
y =∞

]
< 1. Further, as x ∈ B is recurrent, then

1 = Px
[ ∞∑
m=0

1{Xm=x} =∞
]

=
∑
n≥0

Px
[ ∞∑
m=0

1{Xm=x} =∞
∣∣∣τ1
y = n

]
Px
[
τ1
y = n

]
+
∑
n≥0

Px
[ ∞∑
m=0

1{Xm=x} =∞
∣∣∣τ1
y =∞

]
Px
[
τ1
y =∞

]
= 0 + α < 1.

In above, we use the computation that

Px
[ ∞∑
m=0

1{Xm=x} =∞
∣∣∣τ1
y = n

]
= Py

[ ∑
m≥n

1{Xm=x} =∞
]

= 0,

as y 9 x. We notice that 1 < 1 is a contradiction, hence B must be closed.

Proposition 3.27. Let x↔ y, then d(x) = d(y).

Proof. Since x↔ y, and hence there exists m,n > 0 such that

Pm(x, y) > 0, Pn(y, x) > 0.

In particular, one has Pm+n(x, x) > 0 and hence m+ n ∈ R(x).

If k ∈ R(y), then P k(y, y) > 0, and hence

Pm+n+k(x, x) ≥ Pm(x, y)P k(y, y)Pn(y, x) > 0.

Therefore, m+ n+ k ∈ R(x). This implies that

m+ n

d(x)
∈ Z, and

m+ n+ k

d(x)
∈ Z and hence

k

d(x)
∈ Z.

In particular, d(x) divides k for all k ∈ R(y), and hence d(x) ≤ d(y).

Similarly, one has d(y) ≤ d(x) and hence one must have d(x) = d(y).

3.3 Stationary measure

Definition 3.28. (i) We say µ = (µ(x))x∈S is a measure on S if µ(x) ≥ 0 for all x ∈ S. A
measure µ is a distribution on S if

∑
x∈S µ(x) = 1.

(ii) A measure µ on S is called a stationary measure if

µP = µ, i.e.
∑
x∈S

µ(x)P (x, y) = µ(y), for all y ∈ S.
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Remark 3.29. Let µ a stationary distribution and X0 ∼ µ. Then one can deduce that X1 ∼ µ,
· · · , Xn ∼ µ.

Example 3.30. (i) P = In, then every distribution is a stationary distribution.

(ii) Let

P =

(
0 1
1 0

)
.

Then µ = (1
2 ,

1
2) is a stationary distribution.

(iii) Let

P =

0 1 0
1 0 0
0 0 1

 .

Then both (1
2 ,

1
2 , 0) and (0, 0, 1) are stationary distributions.

Lemma 3.31. Let X be an irreducible Markov chain and µ be a stationary measure. Assume
that there exists x ∈ S such that µ(x) ∈ (0,∞). Then µ(y) ∈ (0,∞) for all y ∈ S.

Proof. Since the Markov chain is irreducible, then for any y ∈ S, there exists m,n ≥ 1 such that
Pm(x, y) > 0 and Pn(y, x) > 0. Therefore, when µ(x) > 0, one has

µ(y) = µPm(y) =
∑
z∈S

µ(z)Pm(z, y) ≥ µ(x)Pm(x, y) > 0.

Similarly, when µ(x) <∞, one has

∞ > µ(x) = µPn(x) ≥ µ(y)Pn(y, x) =⇒ µ(y) <∞.

This concludes the proof.

Lemma 3.32. Let f : Rn −→ Rn be an affine function, i.e. f(λ1x1 + · · ·+ λmxm) = λ1f(x1) +
· · · + λmf(xm) for all λ1, · · · , λm ≥ 0 such that

∑
k λk = 1. Let K ⊂ Rn be a convex compacty

set such that f(K) ⊂ K. Then there exists a fixed point x ∈ K of f , i.e. f(x) = x.

Proof. Let us take a arbitrary point x1 ∈ K, and defines (xn)n≥1 as follows:

xn :=
1

n

n−1∑
k=0

f (k)(x1), where f (k) = f ◦ · · · ◦ f with k times composition.

Notice that f(K) ⊂ K and K is convex, one has xn ∈ K.

Further, as f is affine, one has

f(xn) = f
( 1

n

n−1∑
k=0

f (k)(x1)
)

=
1

n

n−1∑
k=0

f (k+1)(x1) = xn +
1

n

(
f (n)(x1)− x1

)
.

Hence ∣∣f(xn)− xn
∣∣ −→ 0, as n −→∞.

Moreover, as K is compact, along a possible subsequence (nk)k≥1, one has xnk → x∞ ∈ K so
that f(xnk)→ f(x∞) by continuity of f . Therefore, one must have f(x∞) = x∞.
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Theorem 3.2. Let X be a Markov chain with a finite state space S. Then there exists a sta-
tionary distribution.

Assume in addition that X is irreducible, then there exists a unique stationary distribution.

Proof. (i) Assume that S = {1, 2, · · · , n} so that we denote a distribution by µ = (µ(1), · · · , µ(n)).
Then the space of all distribution

K := {x ∈ Rn : xk ≥ 0, ∀k, and
n∑
k=1

xk = 1}

is a compact and convex subset of Rn. Further f : K −→ K defined by

f(µ) := µP

is clearly an affine function. Then we can apply Lemma 3.32 to find a stationary distribution.

(ii) Assume in addition that X is irreducible, and µ and π be two stationary distribution. Then
by Lemma 3.31, one has µ(i) > 0 and π(i) > 0 for all i ∈ S. Let k ∈ S be such that

µ(k)

π(k)
= min

i∈S

µ(i)

π(i)
,

so that
µ(i) ≥ µ(k)

π(k)
π(i), for all i ∈ S.

Then

µ(k) =
(
µP
)
(k) =

∑
i∈S

µ(i)P (i, k) ≥
∑
i∈S

µ(k)

π(k)
π(i)P (i, k) =

µ(k)

π(k)

(
πP
)
(k) = µ(k).

This implies that the inequality “ ≥′′ in above should be an equality, so that

µ(i) =
µ(k)

π(k)
π(i), for all i ∈ S.

Equivalently,
µ(i)

π(i)
=
µ(k)

π(k)
, for all i ∈ S.

Notice that both µ and π are distributions, hence their total mass are both 1. Then µ = π.

Theorem 3.3. Let X be a Markov chain, recall that τ1
x := inf{n ≥ 1 : Xn = x}. Let x ∈ S be

a fixed recurrent state, we define

µx(y) := Ex
[ τ1x−1∑
n=0

1{Xn=y}

]
, for each y ∈ S.

Then µx is a stationary measure such that µx(x) = 1 and µx(y) ∈ (0,∞) for all y ∈ S.

Proof. (i) Since the fixed state x ∈ S is recurrent, one has τ1
x <∞, Px-a.s. Then

τ1x−1∑
n=0

1{Xn=y} =

τ1x∑
n=1

1{Xn=y} + 1{X0=y} − 1{X
τ1x

=y}.
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Notice that X0 = x and Xτ1x
= x, Px-a.s. Then

µx(y) = Ex
[ τ1x−1∑
n=0

1{Xn=y}

]
= Ex

[ τ1x∑
n=1

1{Xn=y}

]
= Ex

[ ∞∑
n=1

1{Xn=y} 1{n≤τ1x}

]
=

∞∑
n=1

Ex
[
1{Xn=y} 1{n≤τ1x}

]
.

Next, notice that {n ≤ τ1
x} = {τ1

x ≤ n− 1}c ∈ FXn−1, it follows that

Ex
[
1{Xn=y} 1{n≤τ1x}

]
= Ex

[
1{n≤τ1x}Ex

[
1{Xn=y}

∣∣∣FXn−1

]]
= Ex

[
1{n≤τ1x}P (Xn−1, y)

]
.

Therefore,

µx(y) =
∞∑
n=1

Ex
[
1{Xn=y} P (Xn−1, y)

]
= Ex

[ τ1x∑
n=1

P (Xn−1, y)
]

= Ex
[ τ1x−1∑
n=0

P (Xn, y)
]

= Ex
[ τ1x−1∑
n=0

∑
z∈S

P (z, y)1{Xn=z}

]

=
∑
z∈S

Ex
[ τ1x−1∑
n=0

1{Xn=z}

]
P (z, y) =

∑
z∈S

µx(z)P (z, y).

This proves that µx is a stationary measure.

Finally, notice that X0 = x, Xn 6= x for all n = 1, · · · , τ1
x − 1. Then µx(x) = 1 by its

definition. We can then use Lemma 3.31 to conclude that µx(y) ∈ (0,∞) for all y ∈ S.

Remark 3.33. Notice that µx is only a stationary measure, but not a stationary distribution,
in Theorem 3.3.

Proposition 3.34. Let X be a recurrent and irreducible Markov chain. Let us fix x ∈ S so that
µx defined in Theorem 3.3 is a stationary measure. Let ν be another stationary measure such
that ν(y) ∈ (0,∞) for all y ∈ S. Then there exists a constant C > 0 such that ν(y) = Cµx(y)
for all y ∈ S.

Proof. First, let us recall that, for y 6= x,

µx(y) := Ex
[ τ1x−1∑
n=0

1{Xn=y}

]
=

∞∑
n=1

Ex
[
1{Xn=y; n<τ1x}

]
=

∞∑
n=1

Px
[
Xn = y; n < τ1

x

]
.

Next, multiplying ν(y) by the same constant C > 0 for all y, one obtains again a stationary
measure. One can then assume without loss of generality that

ν(x) = µx(x) = 1.

We next claim that, for all y 6= x and all N ≥ 1,

ν(y) ≥
N∑
n=1

Px
[
Xn = y; n < τ1

x

]
. (12)
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Taking N −→∞, it follows that

ν(y) ≥
∞∑
n=1

Px
[
Xn = y; n < τ1

x

]
= µx(y), for all y 6= x.

Therefore, one has
ν(x)

µx(x)
= 1 ≤ min

y∈S

ν(y)

µx(y)
.

One can then conclude by exactly the same arguments as in Part (ii) in the proof of Theorem
3.2 to conclude that

ν(y) = µx(y), for all y ∈ S.

To conclude, it is then enough to prove the claim in (12). First, it holds true for N = 1 since
for y 6= x,

ν(y) = (νP )(y) ≥ ν(x)P (x, y) = P (x, y) = Px
[
X1 = y; 2 < τ1

x

]
.

Next, assume that (12) holds true for N ≥ 1, i.e.

ν(y) ≥
N∑
n=1

Px
[
Xn = y; n < τ1

x

]
,

we then consider the case N + 1. Recall that ν is a stationary measure such that ν(x) = 1, then
for y 6= x,

ν(y) =
∑
z∈S

ν(z)P (z, y) = P (x, y)+
∑
z 6=x

ν(z)P (z, y) ≥ P (x, y)+

N∑
n=1

∑
z 6=x

Px
[
Xn = z; n < τ1

x

]
P (z, y).

By direct computation,∑
z 6=x

Px
[
Xn = z; n < τ1

x

]
P (z, y) =

∑
z 6=x

Px
[
X1 6= x, · · · , Xn−1 6= x,Xn = z

]
P (z, y)

= Px
[
X1 6= x, · · · , Xn−1 6= x,Xn 6= x,Xn+1 = y

]
= Px

[
Xn+1 = y; n+ 1 < τ1

x

]
.

Therefore,

ν(y) ≥ P (x, y) +
N∑
n=1

Px
[
Xn+1 = y; n+ 1 < τ1

x

]
=

N+1∑
n=1

Px
[
Xn = y; n < τ1

x

]
,

i.e. (12) holds true for the case N + 1. We can then finish the proof of claim (12) for all N ≥ 1
by induction, which concludes the proof of the proposition.

Proposition 3.35. Let X be a recurrent and irreducible Markov chain. Assume that Ex[τ1
x ] <∞

for some x ∈ S. Then Ey[τ1
y ] <∞ for all y ∈ S. Moreover,

π(y) :=
1

Ey[τ1
y ]
, y ∈ S, defines the unique stationary distribution.

33



Proof. (i) Given the fixed state x ∈ S such that Ex[τ1
x ] <∞, we recall that µx defined in Theorem

3.3 is a stationary measure. In particular, one has µx(x) = 1 and µx(y) ∈ (0,∞) for all y ∈ S.

Further, by direct computation

∑
y∈S

µx(y) =
∑
y∈S

Ex
[ τ1x−1∑
n=0

1{Xn=y}

]
= Ex

[ τ1x−1∑
n=0

∑
y∈S

1{Xn=y}

]
= Ex

[
τ1
x

]
<∞.

Then by renormalization, πx(y) := µx(y)

Ex
[
τ1x

] for all y ∈ S defines a stationary distribution πx =

(πx(y))y∈S . In particular, one has

πx(x) =
1

Ex[τ1
x ]
.

(ii) Let us consider an arbitrary z ∈ S, which is also recurrent, so that one obtains a stationary
measure µz = (µz(y))y∈S . By Proposition 3.34, there exists a constant C > 0 such that µz(y) =
Cµx(y) for all y ∈ S. Therefore, one has

Ez
[
τ1
z

]
=
∑
y∈S

µz(y) = C
∑
y∈S

µx(y) = CEx
[
τ1
x

]
<∞.

One can then obtain a stationary measure πz defined by πz(y) := µz(y)

Ez
[
τ1z

] for all y ∈ S. Similarly,

one has
πz(z) =

1

Ez[τ1
z ]
.

Finally, in view of Proposition 3.34, there exists at most one stationary distribution. Therefore,
πx = πz for all z ∈ S, which concludes the proof.

Example 3.36. (i) Random walk on Z.

(ii) Random walk on graph.

(iii) Ehrenfest model.
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