MMAT 5340: Probability and Stochastic Analysis

Lecturer: Xiaolu Tan

April 13, 2024

Contents

1 Probability theory review 2
1.1 Basic probability theory 2
1.2 Conditional expectation 6
2 Discrete time martingale 11
2.1 Optional stopping theorem 13
2.2 Convergence of martingale 16
3 Discrete time Markov chain 23
3.1 Definition and examples 23
3.2 Recurrence, transience 24
3.3 Stationary measure 29

1 Probability theory review

1.1 Basic probability theory

A probability space is a triple $(\Omega, \mathcal{F}, \mathbb{P})$, where

- Ω is the sample space, which is a (non-empty) set.
- \mathcal{F} is a a σ-field, which is a space of subsets of Ω satisfying
$-\Omega \in \mathcal{F}$,
$-A \in \mathcal{F} \Longrightarrow A^{C} \in \mathcal{F}$,
$-A_{n} \in \mathcal{F}, n \geq 1 \Longrightarrow \cup_{n \geq 1} A_{n} \in \mathcal{F}$.
A set $A \in \mathcal{F}$ is called an event.
- $\mathbb{P}: \mathcal{F} \longrightarrow[0,1]$ is a probability measure, i.e.
$-\mathbb{P}[\Omega]=1$,
- If $\left\{A_{n}, n \geq 1\right\} \subset \mathcal{F}$ be such that $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$, then $\mathbb{P}\left[\cup_{n \geq 1} A_{n}\right]=$ $\sum_{n \geq 1} \mathbb{P}\left[A_{n}\right]$.

Example 1.1. (i) $\Omega=\{1,2, \cdots, n\}, \mathcal{F}:=\sigma(\{1\}, \cdots,\{n\}), \mathbb{P}[\{i\}]=\frac{1}{n}$, for each $i=1, \cdots, n$. In above, $\sigma(\{1\}, \cdots,\{n\})$ means the smallest σ-field containing all events $\{1\}, \cdots,\{n\}$. In this case, it is the space of all subsets of Ω.
(ii) $\Omega=\mathbb{R}, \mathcal{F}:=\mathcal{B}(\mathbb{R})$ is the Borel σ-field on \mathbb{R}, i.e. the smallest σ-field which contains all open set in \mathbb{R}. For some density function $\rho: \mathbb{R} \longrightarrow \mathbb{R}_{+}$, a probability measure \mathbb{P} can be defined, first for all intervals (a, b) with $a \leq b$, by $\mathbb{P}[(a, b)]:=\int_{a}^{b} \rho(x) d x$, and then extended on the Borel σ-field \mathcal{F}.

A random variable is a map $X: \Omega \longrightarrow \mathbb{R}$ satisfying

$$
X^{-1}(A):=\{\omega \in \Omega: X(\omega) \in A\} \in \mathcal{F}, \text { for all } A \in \mathcal{B}(\mathbb{R}) \Longleftrightarrow\{X \leq x\} \in \mathcal{F}, \text { for all } x \in \mathbb{R}
$$

The distribution function of X is given by

$$
F(x):=\mathbb{P}[X \leq x], x \in \mathbb{R} .
$$

Example 1.2. (i) A discrete random variable X :

$$
p_{i}=\mathbb{P}\left[X=x_{i}\right], i \in \mathbb{N}, \quad \sum_{i \in \mathbb{N}} p_{i}=1
$$

(ii) A continuous random variable X (with continuous probability distribution), one has the density function

$$
\rho(x)=F^{\prime}(x), x \in \mathbb{R} .
$$

(iii) There exists a some random variable, whoseis distribution neither discrete nor continuous.

Expectation Let X be a (discrete or continuous) random variable, the expectation of $\mathbb{E}[f(X)]$ is defined as follows:

- When X is a discrete random variable such that $\mathbb{P}\left[X=x_{i}\right]=p_{i}$ for $i \in \mathbb{N}$. Then

$$
\mathbb{E}[f(X)]:=\sum_{i \in \mathbb{N}} f\left(x_{i}\right) \mathbb{P}\left[X=x_{i}\right]=\sum_{i \in \mathbb{N}} f\left(x_{i}\right) p_{i}
$$

- When X is a continuous random variable with density $\rho: \mathbb{R} \longrightarrow \mathbb{R}_{+}$. Then

$$
\mathbb{E}[f(X)]:=\int_{\mathbb{R}} f(x) \rho(x) d x, \quad \text { whenever the integral is well defined. }
$$

Remark 1.3. In general case, one defines the expectation as the following Lebesgue integration:

$$
\mathbb{E}[f(X)]:=\int_{\Omega} f(X(\omega)) d \mathbb{P}(\omega)
$$

A rigorous definition of the above integral needs the measure theory, which is not required in this course.

For two (square integrable) random variables X and Y, their variance and co-variance are defined by

$$
\operatorname{Var}[X]:=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right], \quad \operatorname{Cov}[X, Y]:=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]
$$

The characteristic function of X is defined by $\Phi(\theta):=\mathbb{E}\left[e^{i \theta X}\right]$.
Independence The events $A_{1}, \cdots, A_{n} \in \mathcal{F}$ are said to be (mutually) independent if

$$
\mathbb{P}\left[A_{1} \cap \cdots \cap A_{n}\right]=\prod_{i=1}^{n} \mathbb{P}\left[A_{i}\right]
$$

Next, we say that the σ-fields $\mathcal{F}_{1}, \cdots, \mathcal{F}_{n}$ are (mutually) independent if

$$
\mathbb{P}\left[A_{1} \cap \cdots \cap A_{n}\right]=\prod_{i=1}^{n} \mathbb{P}\left[A_{i}\right], \text { for all } A_{1} \in \mathcal{F}_{1}, \cdots, A_{n} \in \mathcal{F}_{n}
$$

Finally, we say that random variables X_{1}, \cdots, X_{n} are (mutually) independent if

$$
\sigma\left(X_{1}\right), \cdots, \sigma\left(X_{n}\right) \text { are independent. }
$$

Remark 1.4. (i) The σ-field $\sigma\left(X_{1}\right)$ is defined as the smallest σ-field containing all events

$$
\left\{X_{1} \leq x\right\}:=\left\{\omega \in \Omega: X_{1}(\omega) \leq x\right\}, \text { for all } x \in \mathbb{R}
$$

As X_{1} is a random variable, it is clear that $\sigma\left(X_{1}\right) \subset \mathcal{F}$.
(ii) We say that the a random variable X_{1} is independent of \mathcal{F}_{2} if $\sigma\left(X_{1}\right)$ and \mathcal{F}_{2} are independent.

Example 1.5. Let us consider the case, where $\Omega=\{0,1,2,3\}, \mathbb{P}[X=\omega]=\frac{1}{4}$, define

$$
X_{1}(\omega)=\left\{\begin{array}{ll}
0 & \omega \in\{0,2\}, \\
1 & \omega \in\{1,3\},
\end{array} \quad X_{2}(\omega)= \begin{cases}0 & \omega \in\{0,1\}, \\
1 & \omega \in\{2,3\}\end{cases}\right.
$$

In this case, $\sigma\left(X_{1}\right)=\{\emptyset, \Omega,\{0,2\},\{1,3\}\}$, and $\sigma\left(X_{2}\right)=\{\emptyset, \Omega,\{0,1\},\{2,3\}\}$. Moreover, it can be checked that X_{1} is independent of $\sigma\left(X_{2}\right)$. For example, one can check that

$$
\mathbb{P}\left[\left\{X_{1}=0\right\} \cap\left\{X_{2}=0\right\}\right]=\mathbb{P}[\{0\}]=\mathbb{P}[\{0,2\}] \mathbb{P}[\{0,1\}]=\frac{1}{4},
$$

which implies that the two events $\left\{X_{1}=0\right\}$ and $\left\{X_{2}=0\right\}$ are independent. Similarly, one can check that $\left\{X_{1}=i\right\}$ is independent of $\left\{X_{2}=j\right\}$ for all $i, j \in\{0,1\}$. This is enough to show that X_{1} and X_{2} are independent.

Lemma 1.6. If X_{1}, \cdots, X_{n} are independent, f_{i} are measurable functions. Then $f_{1}\left(X_{1}\right), \cdots, f_{n}\left(X_{n}\right)$ are independent.

Proof. Let us consider the case $n=2$. To prove that $f_{1}\left(X_{1}\right)$ is independent of $f_{2}\left(X_{2}\right)$, it is enough to check that the event $\left\{f_{1}\left(X_{1}\right) \leq y_{1}\right\}$ is independent of the event $\left\{f_{2}\left(X_{2}\right) \leq y_{2}\right\}$ for all real numbers $y_{1}, y_{2} \in \mathbb{R}$. At the same time, we notice that $\left\{f_{i}\left(X_{i}\right) \leq y_{i}\right\}=\left\{X_{i} \in f_{i}^{-1}\left(\left(-\infty, y_{i}\right]\right)\right\} \in$ $\sigma\left(X_{i}\right)$. Since $\sigma\left(X_{1}\right)$ is independent of $\sigma\left(X_{2}\right)$, this is enough to conclude the proof.

Lemma 1.7. If X_{1}, \cdots, X_{n} are independent, then

$$
\mathbb{E}\left[f_{1}\left(X_{1}\right) \cdots f_{n}\left(X_{n}\right)\right]=\mathbb{E}\left[f_{1}\left(X_{1}\right)\right] \cdots \mathbb{E}\left[f_{n}\left(X_{n}\right)\right] .
$$

Consequently,

$$
\begin{gathered}
\operatorname{Var}\left[X_{1}+\cdots+X_{n}\right]=\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{n}\right] . \\
\operatorname{Cov}\left[f_{i}\left(X_{i}\right), f_{j}\left(X_{j}\right)\right]=0, i \neq j .
\end{gathered}
$$

Remark 1.8. : The inverse may not be correct. Let us consider a random variable $X_{1} \sim \mathcal{U}[-1,1]$ follows the uniform distribution on $[-1,1]$, whose density function is given by $\rho(x)=\frac{1}{2} \mathbf{1}_{\{-1 \leq x \leq 1\}}$. Let $X_{2}:=X_{1}^{2}$. By direct computation, one can check that

$$
\mathbb{E}\left[X_{1} X_{2}\right]=\mathbb{E}\left[X_{1}\right] \mathbb{E}\left[X_{2}\right] \text {, and hence } \operatorname{Cov}\left[X_{1}, X_{2}\right]=0 \text {. }
$$

Nevertheless, it is clear that X_{1} and X_{2} are not independent.
We next provide some notions of convergence of random variables. Let $\left(X_{n}\right)_{n \geq 1}$ a sequence of random variables, ans X be a r.v.

- Almost sure convergence: We say X_{n} converges almost surely to X if

$$
\mathbb{P}\left[\lim _{n \rightarrow \infty} X_{n}=X\right]=1
$$

- Convergence in probability: We say X_{n} converges to X in probability if, for any $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\left|X_{n}-X\right| \geq \varepsilon\right]=0
$$

- Convergence in distribution: We say X_{n} converges to X in distribution if, for any bounded continuous function f,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[f\left(X_{n}\right)\right]=\mathbb{E}[f(X)] .
$$

- Convergence in $L^{p}(p \geq 1)$ space: Assume $\mathbb{E}\left[\left|X_{n}\right|^{p}\right]<\infty$, we say X_{n} converges to X in L^{p} space if

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}-X\right|^{p}\right]=0
$$

Lemma 1.9 (Relations between the different notions of the convergence). One has

$$
\text { Cvg a.s. } \Longrightarrow \mathrm{Cvg} \text { in prob. } \Longrightarrow \mathrm{Cvg} \text { in dist., }
$$

Cvg in $L^{p} \Longrightarrow \mathrm{Cvg}$ in prob.

$$
\text { Cvg in prob. } \Longrightarrow \mathrm{Cvg} \text { a.s. along a subsequence. }
$$

Lemma 1.10 (Monotone convergence theorem). Assume that $0 \leq X_{n} \leq X_{n+1}$ for all $n \geq 1$, then

$$
\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n}\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right] .
$$

Remark 1.11. In practice, we may have $X_{n}:=f_{n}(X)$ for a sequence $\left(f_{n}\right)_{n \geq 1}$ satisfying $0 \leq$ $f_{1} \leq f_{2} \leq \cdots$. In this case, we have

$$
\mathbb{E}\left[\lim _{n \rightarrow \infty} f_{n}(X)\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[f_{n}(X)\right]
$$

Theorem 1.1 (Law of Large Number). Assume that $\left(X_{n}\right)_{n \geq 1}$ is an i.i.d. sequence with the same distribution of X and such that $\mathbb{E}[|X|]<\infty$. Then

$$
\lim _{n \rightarrow \infty} \bar{X}_{n}:=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} X_{k}=\mathbb{E}[X] \text {, a.s. }
$$

Theorem 1.2 (Central Limit Theorem). Assume that $\left(X_{n}\right)_{n \geq 1}$ is an i.i.d. sequence with the same distribution of X and such that $\mathbb{E}\left[|X|^{2}\right]<\infty$. Then

$$
\frac{\sqrt{n}\left(\bar{X}_{n}-\mathbb{E}[X]\right)}{\sqrt{\operatorname{Var}[X]}} \text { converges in distribution to } N(0,1) .
$$

We finally provide some useful inequalities.
Lemma 1.12 (Jensen inequality). Let X be a r.v., ϕ be a convex function. Assume that $\mathbb{E}[|X|]<$ ∞ and $\mathbb{E}[|\phi(X)|]<\infty$. Then

$$
\phi(\mathbb{E}[X]) \leq \mathbb{E}[\phi(X)]
$$

Proof. As ϕ is a convex function, there exists an affine function $g(x)=a x+b$ such that

$$
\phi(\mathbb{E}[X])=g(\mathbb{E}[X]), \quad \text { and } \phi(x) \geq g(x) \text { for all } x \in \mathbb{R}
$$

Therefore,

$$
\mathbb{E}[\phi(X)] \geq \mathbb{E}[g(X)]=\mathbb{E}[a X+b]=a \mathbb{E}[X]+b=g(\mathbb{E}[X])=\phi(\mathbb{E}[X]) .
$$

Lemma 1.13 (Chebychev inequality). Let X be a r.v., $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be an increasing function. Assume that $\mathbb{E}[f(X)]<\infty$ and $f(a)>0$. Then

$$
\mathbb{P}[X \geq a] \leq \frac{\mathbb{E}[f(X)]}{f(a)]}
$$

Proof. We will prove this for continuous random variable X, and the proof for discrete random variable X is essentially the same, replacing integrals with sums. Let $\rho(x)$ be the probability density function of X. By definition, $\mathbb{E}[f(X)]=\int_{-\infty}^{\infty} f(x) \rho(x) d x$. By monotonicity of $f(x)$, and the fact that $f(x), \rho(x)$ are non-negative,

$$
\begin{aligned}
\mathbb{E}[f(X)] & =\int_{-\infty}^{\infty} f(x) \rho(x) d x \\
& =\int_{-\infty}^{a} f(x) \rho(x) d x+\int_{a}^{\infty} f(x) \rho(x) d x \\
& \geq \int_{a}^{\infty} f(x) \rho(x) d x \\
& \geq \int_{a}^{\infty} f(a) \rho(x) d x
\end{aligned}
$$

the result follows by taking out the constant $f(a)$ from the integral.
Lemma 1.14 (Cauchy-Schwarz inequality). Let X and Y be two r.v. Assume that $\mathbb{E}\left[|X|^{2}\right]<\infty$ and $\mathbb{E}\left[|Y|^{2}\right]<\infty$. Then

$$
\mathbb{E}[X Y] \leq \sqrt{\mathbb{E}\left[|X|^{2}\right] \mathbb{E}\left[|Y|^{2}\right]}
$$

1.2 Conditional expectation

Theorem 1.3. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, \mathcal{G} be a sub- σ-field of \mathcal{F}, X a random variable. Assume that $\mathbb{E}[|X|]<\infty$. Then there exists a random variable Z satisfying the following:

- $\mathbb{E}[|Z|]<\infty$.
- Z is \mathcal{G}-measurable.
- $\mathbb{E}[X Y]=\mathbb{E}[Z Y]$, for all \mathcal{G}-measurable bounded random variables Y.

Moreover, the random Z is unique in the sense of almost sure.
Definition 1.15. We say that the random variable Z given in Theorem 1.3 is the conditional expectation of X knowing \mathcal{G}, and denote

$$
\mathbb{E}[X \mid \mathcal{G}]:=Z
$$

When $\mathcal{G}=\sigma\left(Y_{1}, \cdots, Y_{n}\right)$, for $Y=\left(Y_{1}, \cdots . Y_{n}\right)$, we also write

$$
\mathbb{E}\left[X \mid Y_{1}, \cdots, Y_{n}\right]:=\mathbb{E}[X \mid \mathcal{G}] .
$$

In this case, there exists a measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $\mathbb{E}[X \mid Y]=f(Y)$. To compute $\mathbb{E}[X \mid Y]$, it is enough to compute the function:

$$
\mathbb{E}[X \mid Y=y]:=f(y), \text { for all } y \in \mathbb{R}^{n} .
$$

Example 1.16. (i) Discrete case: $\mathbb{P}\left[X=x_{i}, Y=y_{j}\right]=p_{i, j}$ with $\sum_{i, j} p_{i, j}=1$. Then

$$
\mathbb{E}\left[X \mid Y=y_{j}\right]=\frac{\mathbb{E}\left[X \mathbf{1}_{Y=y_{j}}\right]}{\mathbb{E}\left[\mathbf{1}_{Y=y_{j}}\right]}=\frac{\sum_{i \in \mathbb{N}} x_{i} p_{i, j}}{\sum_{i \in \mathbb{N}} p_{i, j}}
$$

Proof. Let us denote $f\left(y_{j}\right):=\frac{\sum_{i \in \mathbb{N}} x_{i} p_{i, j}}{\sum_{i \in \mathbb{N}} p_{i, j}}$, then it is enough to show that $\mathbb{E}[X \mid Y]=f(Y)$.
First, it is trivial that $f(Y)$ is $\sigma(Y)$-measurable.
Next, by direct computation,

$$
\mathbb{E}[|f(Y)|]=\sum_{j \in \mathbb{N}}\left|f\left(y_{j}\right)\right| \mathbb{P}\left[Y=y_{j}\right]=\sum_{j \in \mathbb{N}} \frac{\left|\sum_{i \in \mathbb{N}} x_{i} p_{i, j}\right|}{\sum_{i \in \mathbb{N}} p_{i, j}} \sum_{i \in \mathbb{N}} p_{i, j} \leq \sum_{i, j \in \mathbb{N}}\left|x_{i}\right| p_{i, j}=\mathbb{E}[|X|]<\infty .
$$

Finally, for any $\sigma(Y)$-measurable bounded random variable Z, there exists a measurable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $Z=g(Y)$, then we have

$$
\mathbb{E}[f(Y) g(Y)]=\sum_{j \in \mathbb{N}} f\left(y_{j}\right) g\left(y_{j}\right) \mathbb{P}\left[Y=y_{j}\right]=\sum_{i, j \in \mathbb{N}} x_{i} g\left(y_{j}\right) p_{i, j}=\mathbb{E}[X g(Y)] .
$$

This is enough to conclude the proof by the definition of conditional expectation.
(ii) Continuous case: Let $\rho(x, y)$ be the density function of (X, Y), and assume that $\int_{\mathbb{R}} \rho(x, y) d x>$ 0 for all $y \in \mathbb{R}$. Then

$$
\begin{equation*}
\mathbb{E}[X \mid Y=y]=\frac{\int_{\mathbb{R}} x \rho(x, y) d x}{\int_{\mathbb{R}} \rho(x, y) d x} \tag{1}
\end{equation*}
$$

Proof. Let us denote the r.h.s. of (1) as $f(y)$. Then it is enough to show that $\mathbb{E}[X \mid Y]=f(Y)$.
First, it is clear that $f(Y)$ is $\sigma(Y)$-measurable.
Next,

$$
\begin{aligned}
\mathbb{E}[|f(Y)|] & =\int_{\mathbb{R}} \int_{\mathbb{R}}|f(y)| \rho(x, y) d x d y=\int_{\mathbb{R}} \int_{\mathbb{R}}\left|\frac{\int_{\mathbb{R}} x \rho(x, y) d x}{\int_{\mathbb{R}} \rho(x, y) d x}\right| \rho(x, y) d x d y \\
& \leq \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\int_{\mathbb{R}}|x| \rho(x, y) d x}{\int_{\mathbb{R}} \rho(x, y) d x} \rho(x, y) d x d y=\int_{\mathbb{R}} \int_{\mathbb{R}}|x| \rho(x, y) d x d y=\mathbb{E}[|X|]<\infty .
\end{aligned}
$$

Finally, for any $\sigma(Y)$-measurable bounded random variable Z, there exists a measurable function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $Z=g(Y)$, then we have

$$
\begin{aligned}
\mathbb{E}[f(Y) g(Y)] & =\int_{\mathbb{R}} \int_{\mathbb{R}} f(y) g(y) \rho(x, y) d x d y=\int_{\mathbb{R}} \int_{\mathbb{R}} \frac{\int_{\mathbb{R}} x \rho(x, y) d x}{\int_{\mathbb{R}} \rho(x, y) d x} g(y) \rho(x, y) d x d y \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} x g(y) \rho(x, y) d x d y=\mathbb{E}[X g(Y)] .
\end{aligned}
$$

This shows that $\mathbb{E}[X \mid Y]=f(Y)$ by the definition of conditional expectation.
Example 1.17. Let X and Y be two independent random variables with the same distribution, and $\mathbb{P}[X= \pm 1]=\mathbb{P}[X= \pm 1]=\frac{1}{2}$. One can compute that

$$
\mathbb{E}[X]=0, \quad \text { and } \mathbb{E}[X+Y \mid Y]=Y
$$

We finally provide some properties of the conditional expectation from its definition.
Lemma 1.18. Let X and Y be two r.v. such that $\mathbb{E}[|X|]<\infty$ and $\mathbb{E}[|Y|]<\infty, a, b$ be two real numbers. Then

$$
\mathbb{E}[a X+b Y \mid \mathcal{G}]=a \mathbb{E}[X \mid \mathcal{G}]+b \mathbb{E}[Y \mid \mathcal{G}] .
$$

Proof. It is enough to verify that $a \mathbb{E}[X \mid \mathcal{G}]+b \mathbb{E}[Y \mid \mathcal{G}]$ satisfies the three properties in the definition of the conditional expectation $\mathbb{E}[a X+b Y \mid \mathcal{G}]$.

First, $a \mathbb{E}[X \mid \mathcal{G}]+b \mathbb{E}[Y \mid \mathcal{G}]$ is obviously \mathcal{G}-measurable.
Next, from the definition of conditional expectation, we know $\mathbb{E}[|\mathbb{E}[X \mid \mathcal{G}]|], \mathbb{E}[|\mathbb{E}[Y \mid \mathcal{G}]|]<\infty$, then

$$
\mathbb{E}[|a \mathbb{E}[X \mid \mathcal{G}]+b \mathbb{E}[Y \mid \mathcal{G}]|] \leq|a| \mathbb{E}[|\mathbb{E}[X \mid \mathcal{G}]|]+|b| \mathbb{E}[|\mathbb{E}[Y \mid \mathcal{G}]|]<\infty
$$

Finally, for any \mathcal{G}-measurable bounded random variable Z, we know that

$$
\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] Z]=\mathbb{E}[X Z], \mathbb{E}[\mathbb{E}[Y \mid \mathcal{G}] Z]=\mathbb{E}[Y Z]
$$

Then by linearity of expectation, we have

$$
\begin{aligned}
\mathbb{E}[(a \mathbb{E}[X \mid \mathcal{G}]+b \mathbb{E}[Y \mid \mathcal{G}]) Z] & =a \mathbb{E}[\mathbb{E}[X \mid \mathcal{G}] Z]+b \mathbb{E}[\mathbb{E}[Y \mid \mathcal{G}]) Z] \\
& =a \mathbb{E}[X Z]+b \mathbb{E}[Y Z]=\mathbb{E}[(a X+b Y) Z] .
\end{aligned}
$$

Lemma 1.19. Let X, Y be r.v. such that $\mathbb{E}[|X|]<\infty, Y$ is \mathcal{G}-measurable and $\mathbb{E}[|X Y|]<\infty$, then

$$
\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E}[X], \quad \text { and } \mathbb{E}[X Y \mid \mathcal{G}]=\mathbb{E}[X \mid \mathcal{G}] Y
$$

If X is independent of \mathcal{G}, then

$$
\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X] .
$$

Proof. First, by taking $Y=\mathbb{1}_{\Omega}$ in the third property in Theorem 1.3, it follows immediately that $\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}]]=\mathbb{E}[X]$.

To prove $\mathbb{E}[X Y \mid \mathcal{G}]=\mathbb{E}[X \mid \mathcal{G}] Y$, it is equivalent to verify that $\mathbb{E}[X \mid \mathcal{G}] Y$ satisfies the three properties in the definition of conditional expectation for $\mathbb{E}[X Y \mid \mathcal{G}]$, by the uniqueness of the conditional expectation.

Let us first assume that X and Y are nonnegative. Then for any $k \in \mathbb{N}$, then $\mathbb{E}[X \mid \mathcal{G}](Y \wedge k)$ is \mathcal{G}-measurable since both of $\mathbb{E}[X \mid \mathcal{G}]$ and $(Y \wedge k)$ are \mathcal{G}-measurable. Moreover, for the integrability, one has

$$
\mathbb{E}[|\mathbb{E}[X \mid \mathcal{G}](Y \wedge k)|] \leq k \mathbb{E}[|\mathbb{E}[X \mid \mathcal{G}]|]<\infty
$$

Finally, for any bounded \mathcal{G}-measurable r.v. $Z,(Y \wedge k) Z$ is bounded and \mathcal{G}-measurable, then one has

$$
\mathbb{E}[\mathbb{E}[X \mid \mathcal{G}](Y \wedge k) Z]=\mathbb{E}[X(Y \wedge k) Z]=\mathbb{E}[\mathbb{E}[X(Y \wedge k) \mid \mathcal{G}] Z] .
$$

Hence it follows that

$$
\mathbb{E}[X(Y \wedge k) \mid \mathcal{G}]=\mathbb{E}[X \mid \mathcal{G}](Y \wedge k) .
$$

Then by monotone convergence theorem for conditional expectation (see Lemma 1.21 below), one obtains that

$$
\mathbb{E}[X \mid \mathcal{G}] Y=\lim _{k \rightarrow+\infty} \mathbb{E}[X \mid \mathcal{G}](Y \wedge k)=\lim _{k \rightarrow+\infty} \mathbb{E}[X(Y \wedge k) \mid \mathcal{G}]=\mathbb{E}\left[\lim _{k \rightarrow+\infty} X(Y \wedge k) \mid \mathcal{G}\right]=\mathbb{E}[X Y \mid \mathcal{G}]
$$

When X, Y are not always nonnegative, one can write $X=X^{+}-X^{-}, Y=Y^{+}-Y^{-}$, where X^{+}, X^{-}, Y^{+}and Y^{-}are all nonneagive random variables. Then

$$
\begin{aligned}
\mathbb{E}[X \mid \mathcal{G}] Y & =\mathbb{E}\left[X^{+}-X^{-} \mid \mathcal{G}\right]\left(Y^{+}-Y^{-}\right) \\
& =\mathbb{E}\left[X^{+} \mid \mathcal{G}\right] Y^{+}-\mathbb{E}\left[X^{-} \mid \mathcal{G}\right] Y^{+}-\mathbb{E}\left[X^{+} \mid \mathcal{G}\right] Y^{-}+\mathbb{E}\left[X^{-} \mid \mathcal{G}\right] Y^{-} \\
& =\mathbb{E}\left[X^{+} Y^{+} \mid \mathcal{G}\right]-\mathbb{E}\left[X^{-} Y^{+} \mid \mathcal{G}\right]-\mathbb{E}\left[X^{+} Y^{-} \mid \mathcal{G}\right]+\mathbb{E}\left[X^{-} Y^{-} \mid \mathcal{G}\right] \\
& =\mathbb{E}\left[\left(X^{+}-X^{-}\right)\left(Y^{+}-Y^{-}\right) \mid \mathcal{G}\right] \\
& =\mathbb{E}[X Y \mid \mathcal{G}] .
\end{aligned}
$$

Moreover, $\mathbb{E}[X \mid \mathcal{G}] Y$ is \mathcal{G}-measurable since both of $\mathbb{E}[X \mid \mathcal{G}]$ and Y are \mathcal{G}-measurable. One can also check the integrability condition by

$$
\mathbb{E}[|\mathbb{E}[X \mid \mathcal{G}] Y|]=\mathbb{E}[|\mathbb{E}[X Y \mid \mathcal{G}]|]<\infty,
$$

which proves that $\mathbb{E}[X Y \mid \mathcal{G}]=\mathbb{E}[X \mid \mathcal{G}] Y$.
Finally, when X is independent of \mathcal{G}, we consider $\mathbb{E}[X]$ as a constant r.v., and check that it satisfies the properties in the definition of conditional expectation $\mathbb{E}[X \mid \mathcal{G}]$. As a constant r.v., $\mathbb{E}[X]$ is clearly \mathcal{G}-measurable and integrable. Moreover, for any bounded \mathcal{G}-measurability r.v. Z, we have by linearity of expectation

$$
\mathbb{E}[\mathbb{E}[X] Z]=\mathbb{E}[X Z]
$$

This proves that $\mathbb{E}[X]$ is the conditional expectation of X knowing \mathcal{G}.
Lemma 1.20. Let X be a random variable, φ be a convex function. Then

$$
\mathbb{E}[\varphi(X) \mid \mathcal{G}] \geq \varphi(\mathbb{E}[X \mid \mathcal{G}]), \text { a.s. }
$$

Proof. We first prove monotonicity for conditional expectation. Claim that if X, Y are r.v. such that $\mathbb{E}[|X|], \mathbb{E}[|Y|]<\infty$ and $X \geq Y$, then $\mathbb{E}[X \mid \mathcal{G}] \geq \mathbb{E}[Y \mid \mathcal{G}]$ a.s. To see this, set $Z:=\mathbb{E}[X-Y \mid \mathcal{G}]$ and $A:=\{\omega: Z<0\}$. Since $A \in \mathcal{G}$ by definition and $(X-Y) \geq 0$ a.s., $\mathbb{E}\left[Z 1_{A}\right]=E\left[(X-Y) \mathbf{1}_{A}\right] \geq$ 0 so $\mathbb{P}[Z<0]]=P[\mathbb{E}[X \mid \mathcal{G}]<\mathbb{E}[Y \mid \mathcal{G}]]=0$ as claimed.

Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if and only if there exits a family $\left\{f_{n}\right\}$ of affine functions (i.e. $f_{n}(x)=a_{n} x+b_{n}$, for some $a_{n}, b_{n} \in \mathbb{R}$) such that

$$
f(x)=\sup _{n} f_{n}(x), \quad \text { for all } x \in \mathbb{R}
$$

Thus,

$$
\mathbb{E}[\varphi(X) \mid \mathcal{G}] \geq \mathbb{E}\left[a_{n} X+b_{n} \mid \mathcal{G}\right]=a_{n} \mathbb{E}[X \mid \mathcal{G}]+b_{n}
$$

By taking supremum over both sides, it follows that

$$
\mathbb{E}[\varphi(X) \mid \mathcal{G}] \geq \sup _{n}\left\{a_{n} \mathbb{E}[X \mid \mathcal{G}]+b_{n}\right\}=\varphi(\mathbb{E}[X \mid \mathcal{G}])
$$

Lemma 1.21 (Monotone convergence theorem). Let $\left(X_{n}, n \geq 1\right)$ be a sequence of integrable random variable such that $0 \leq X_{n} \leq X_{n+1}$, a.s. Then

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{G}\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n} \mid \mathcal{G}\right] .
$$

Proof. Notice that by the increasing of $\left\{X_{n}\right\}_{n}$ for almost all ω, we have

$$
\mathbb{E}\left[X_{n} \mid \mathcal{G}\right] \leq \mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n} \mid \mathcal{G}\right] \text { a.s. }
$$

Then with the same procedure in the proof of conditional Jensen's Inequality, we can prove that $0 \leq \mathbb{E}\left[X_{n} \mid \mathcal{G}\right] \leq \mathbb{E}\left[X_{n+1} \mid \mathcal{G}\right]$ a.s. and we get the existence of $\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{G}\right]$. Taking the limit in the above inequality, we have

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{G}\right] \leq \mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n} \mid \mathcal{G}\right] \text { a.s. }
$$

Then the monotone convergence theorem (Lemma 1.10) implies that

$$
\mathbb{E}\left[\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n} \mid \mathcal{G}\right]\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[\mathbb{E}\left[X_{n} \mid \mathcal{G}\right]\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n} \mid \mathcal{G}\right]\right]
$$

Hence we conclude the proof.
Lemma 1.22. Let X be an integrable random variable, and $\mathcal{G}:=\{\emptyset, \Omega\}$. Then

$$
\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X]
$$

Proof. It is equivalent to prove that any \mathcal{G}-measurable random variable Z is a constant random variable a.s.

By contradiction, we assume that Z is not a constant random variable. Then there exist some constants $C_{1}, C_{2} \in \mathbb{R}$ with $C_{1}<C_{2}$ such that

$$
\left\{Z=C_{1}\right\} \neq \phi, \quad\left\{Z=C_{2}\right\} \neq \phi
$$

Hence we have $\left\{Z \leq C_{1}\right\} \notin \mathcal{G}$, which gives the fact that Z is not \mathcal{G}-measurable. Now since this is a contradiction, we complete the proof.

Lemma 1.23. Let X be an integrable random variable, and $\mathcal{G}_{1} \subset \mathcal{G}_{2}$ be two sub- σ-field of \mathcal{F}. Then

$$
\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}_{2}\right] \mid \mathcal{G}_{1}\right]=\mathbb{E}\left[X \mid \mathcal{G}_{1}\right]
$$

Proof. Set $Z:=\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}_{2}\right] \mid \mathcal{G}_{1}\right]$, it is enough to verify that Z satisfies the three properties in the definition of $\mathbb{E}\left[X \mid \mathcal{G}_{1}\right]$.

First, Z is obviously \mathcal{G}_{1}-measurable and integrable, as it is defined as the conditional expectation of some random variable knowing \mathcal{G}_{1}. Moreover, for any \mathcal{G}_{1}-measurable bounded random variable Y, we know by Lemma 1.19 that

$$
\begin{aligned}
\mathbb{E}[Z Y] & =\mathbb{E}\left[\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}_{2}\right] \mid \mathcal{G}_{1}\right] Y\right]=\mathbb{E}\left[\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}_{2}\right] Y \mid \mathcal{G}_{1}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[X \mid \mathcal{G}_{2}\right] Y\right]=\mathbb{E}\left[\mathbb{E}\left[X Y \mid \mathcal{G}_{2}\right]\right]=\mathbb{E}[X Y]
\end{aligned}
$$

This concludes the proof.

2 Discrete time martingale

Definition 2.1. In a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a stochastic process is a family $\left(X_{n}\right)_{n \geq 0}$ of random variables indexed by time $n \geq 0$ (or $t_{n}, n \geq 0$). A filtration is family $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n \geq 0}$ of sub- σ-field of \mathcal{F} such that $\mathcal{F}_{n} \subset \mathcal{F}_{n+1}$ for all $n \geq 0$.

Example 2.2. Let $B=\left(B_{n}\right)_{n \geq 0}$ be some stochastic process, then the following definition of \mathcal{F}_{n} provides a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$:

$$
\mathcal{F}_{n}:=\sigma\left(B_{0}, B_{1}, \cdots, B_{n}\right) .
$$

In particular, let $B_{0}=0, B_{n}=\sum_{k=1}^{n} \xi_{k}$ where $\left(\xi_{k}\right)_{k \geq 1}$ is an i.i.d. sequence of random variables with distribution $\mathbb{P}\left[\xi_{k}= \pm 1\right]=\frac{1}{2}$. Then

$$
\mathcal{F}_{0}=\{\emptyset, \Omega\}, \quad \mathcal{F}_{1}=\mathcal{F}_{0} \cup\left\{A, A^{c}\right\}, \text { with } A:=\left\{\xi_{1}=1\right\}, A^{c}=\left\{\xi_{1}=-1\right\}, \cdots
$$

Definition 2.3. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a stochastic process, $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n \geq 1}$ be a filtration.
We say X is adapted to the filtration \mathbb{F} if

$$
X_{n} \in \mathcal{F}_{n} \text { (i.e. } X_{n} \text { is } \mathcal{F}_{n} \text {-measurable), for all } n \geq 0 .
$$

We say X is predictable w.r.t. \mathbb{F} if

$$
X_{n} \in \mathcal{F}_{(n-1) \vee 0} \text { for all } n \geq 0
$$

Remark 2.4. Let \mathbb{F} be the filtration generated by the process B as in the above example. If X is \mathbb{F}-adapted, then $X_{n} \in \mathcal{F}_{n}=\sigma\left(B_{0}, \cdots, B_{n}\right)$ so that

$$
X_{n}=g_{n}\left(B_{0}, \cdots, B_{n}\right), \text { for some measurable function } g_{n} .
$$

Similarly, if X is \mathbb{F}-predictable, then $X_{n+1} \in \mathcal{F}_{n}$ so that

$$
X_{n+1}=g_{n+1}^{\prime}\left(B_{0}, \cdots, B_{n}\right), \text { for some measurable function } g_{n+1}^{\prime} .
$$

Example 2.5. Let $\left(\xi_{k}\right)_{k \geq 1}$ be a sequence of i.i.d random variable, such that $\mathbb{P}\left[\xi_{k}= \pm 1\right]=\frac{1}{2}$. Then the process $X=\left(X_{n}\right)_{n \geq 0}$ defined as follows is called a random walk:

$$
X_{0}=0, \quad X_{n}=\sum_{k=1}^{n} \xi_{k} .
$$

Remark 2.6. In above examples, a stochastic process usually starts from time 0 , but we can also consider stochastic process starting from some time t_{k}.

Definition 2.7. Let $X=\left(X_{n}\right)_{n \geq 0}$ be a stochastic process, $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n \geq 1}$ be a filtration.
We say X is a martingale (w.r.t. \mathbb{F}) if X is \mathbb{F}-adapted, each random variable X_{n} is integrable, and

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n} .
$$

We say X is a sub-martingale (w.r.t. \mathbb{F}) if X is \mathbb{F}-adapted, each random variable X_{n} is integrable, and

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \geq X_{n}
$$

We say X is a super-martingale (w.r.t. \mathbb{F}) if X is \mathbb{F}-adapted, each random variable X_{n} is integrable, and

$$
\begin{gathered}
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \leq X_{n} . \\
11
\end{gathered}
$$

Notice that martingale X (w.r.t. to some filtration \mathbb{F}) is a sub-martingale, and at the same time a super-martingale.

Example 2.8. Recall that the random walk $X=\left(X_{n}\right)_{n \geq 0}$ is defined as follows:

$$
X_{0}=0, \quad X_{n}=\sum_{k=1}^{n} \xi_{k}
$$

where $\left(\xi_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. of random variable such that $\mathbb{P}[\xi= \pm 1]=\frac{1}{2}$.
Then

- X is a martingale;
- $\left(X_{n}^{2}\right)_{n \geq 0}$ is a sub-martingale;
- $\left(X_{n}^{2}-n\right)_{n \geq 0}$ is a martingale.

Proof. First, it is clear that X is \mathbb{F}-adapted with respect to the natural filtration \mathbb{F} generated by X, and X_{n} is integrable for all $n \geq 0$. Then by using Lemma 1.19,

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[X_{n}+\xi_{n+1} \mid \mathcal{F}_{n}\right] \\
& =\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[\xi_{n+1} \mid \mathcal{F}_{n}\right] \\
& =X_{n}+\mathbb{E}\left[\xi_{n+1}\right] \\
& =X_{n} .
\end{aligned}
$$

Next, as $\left(X_{n}^{2}\right)_{n \geq 0}$ is \mathbb{F}-adapted, and X_{n}^{2} is integrable, for $\forall n \geq 0$, we compute that

$$
\begin{aligned}
\mathbb{E}\left[X_{n+1}^{2} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[\left(X_{n}+\xi_{n+1}\right)^{2} \mid \mathcal{F}_{n}\right] \\
& =\mathbb{E}\left[X_{n}^{2}+2 X_{n} \xi_{n+1}+\xi_{n+1}^{2} \mid \mathcal{F}_{n}\right] \\
& =\mathbb{E}\left[X_{n}^{2} \mid \mathcal{F}_{n}\right]+2 \mathbb{E}\left[X_{n} \xi_{n+1} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[\xi_{n+1}^{2} \mid \mathcal{F}_{n}\right] \\
& =X_{n}^{2}+2 X_{n} \mathbb{E}\left[\xi_{n+1} \mid \mathcal{F}_{n}\right]+\mathbb{E}\left[\xi_{n+1}^{2}\right] \\
& =X_{n}^{2}+1 .
\end{aligned}
$$

Finally, $Y_{n}:=X_{n}^{2}-n$ is \mathbb{F}-adapted, and Y_{n} is integrable, then

$$
\begin{aligned}
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[X_{n+1}^{2}-(n+1) \mid \mathcal{F}_{n}\right] \\
& =X_{n}^{2}+1-(n+1) \\
& =X_{n}^{2}-n \\
& =Y_{n} .
\end{aligned}
$$

Example 2.9. Let $\left(Z_{k}\right)_{k \geq 1}$ be a sequence of random variable such that $Z_{k} \sim N(0,1)$, and $\sigma \in \mathbb{R}$, $X_{0} \in \mathbb{R}$ be real constants. Let $\mathcal{F}_{n}:=\sigma\left(Z_{1}, \cdots, Z_{n}\right)$, and

$$
X_{n}:=X_{0} \exp \left(\sigma \sum_{k=1}^{n} Z_{k}-\frac{1}{2} n \sigma^{2}\right)
$$

Then $\left(X_{n}\right)_{n \geq 1}$ is a martingale (w.r.t. \mathbb{F}).

Example 2.10. Let $\mathbb{F}=\left(\mathcal{F}_{n}\right)_{n \geq 1}$ be a filtration, Z be an integrable random variable, and

$$
X_{n}:=\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right]
$$

Then $\left(X_{n}\right)_{n \geq 1}$ is a martingale (w.r.t. $\left.\mathbb{F}\right)$.
Lemma 2.11. Let \mathbb{F} be a filtration, and X be a martingale w.r.t. \mathbb{F}. Let \mathbb{F}^{X} denote the natural filtration generated by X. Then X is also a martingale w.r.t. \mathbb{F}^{X}.
Proof. Given that X is \mathbb{F}-adapted, we know that $X_{s} \in \mathcal{F}_{n}$ for $s \in\{0,1, \cdots, n\}$. Define \mathcal{F}_{n}^{X} as the σ-field generated by $X_{0}, X_{1}, \cdots, X_{n}$, i.e. $\mathcal{F}_{n}^{X}:=\sigma\left(X_{0}, X_{1}, \cdots, X_{n}\right)$, then $\mathcal{F}_{n}^{X} \subset \mathcal{F}_{n}$. We know that X is \mathbb{F}^{X}-adapted, X_{n} is integrable for $\forall n \geq 0$, and

$$
\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}^{X}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \mid \mathcal{F}_{n}^{X}\right]=\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}^{X}\right]=X_{n}
$$

then it is clear that X is a martingale with respect to \mathbb{F}^{X}.
Notice that a martingale X is associated to some filtration \mathbb{F}. However, when the filtration is not specified, we say X is a martingale means that X is a martingale w.r.t. the natural filtration generated by X. In this case, we can also write

$$
\mathbb{E}\left[X_{n+1} \mid X_{0}, \cdots, X_{n}\right]=X_{n}, \quad \text { for all } n \geq 0
$$

Lemma 2.12. Let X be a martingale w.r.t. the filtration \mathbb{F}, then

$$
\mathbb{E}\left[X_{m} \mid \mathcal{F}_{n}\right]=X_{n}, \text { for all } m \geq n \geq 0
$$

Moreover,

$$
\mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[X_{0}\right], \text { for all } n \geq 0
$$

Proof. As X is a martingale, we know that $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}$ and $\mathcal{F}_{n} \subset \mathcal{F}_{n+1}$. Then by the tower property in Lemma 1.23,

$$
\mathbb{E}\left[X_{n+2} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\mathbb{E}\left[X_{n+2} \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=X_{n}
$$

The result follows by using the above equation.

2.1 Optional stopping theorem

Definition 2.13. Let \mathbb{F} be a filtration, a stopping time w.r.t. \mathbb{F} is a random variable $\tau: \Omega \longrightarrow$ $\{0,1, \cdots\} \cup\{\infty\}$ such that

$$
\begin{equation*}
\{\tau \leq n\} \in \mathcal{F}_{n}, \quad \text { for all } n \geq 0 \tag{2}
\end{equation*}
$$

Remark 2.14. In place of (2), it is equivalent to define the stopping time by the property:

$$
\{\tau=n\} \in \mathcal{F}_{n}, \quad \text { for all } n \geq 0
$$

Proof. We can write

$$
\begin{align*}
& \{\tau=n\}=\{\tau \leq n\} \backslash\{\tau \leq n-1\} \tag{3}\\
& \{\tau \leq n\}=\bigcup_{k=0}^{n}\{\tau=k\} \tag{4}
\end{align*}
$$

Now if $\{\tau \leq n\} \in \mathcal{F}_{n}$ for any $n \geq 0$, then $\{\tau \leq n-1\} \in \mathcal{F}_{n-1} \subset \mathcal{F}_{n}$, hence we know from (3) that $\{\tau=n\} \in \mathcal{F}_{n}$.

Next, if $\{\tau=n\} \in \mathcal{F}_{n}$ for any $n \geq 0$, then for any $0 \leq k \leq n,\{\tau=k\} \in \mathcal{F}_{k} \subset \mathcal{F}_{n}$, hence we know from (4) that $\{\tau \leq n\} \in \mathcal{F}_{n}$.

Lemma 2.15. Let X be a stochastic process adapted to the filtration \mathbb{F}, and B be a Borel set in \mathbb{R}. Then the hitting time τ defined below is a stopping w.r.t. \mathbb{F} :

$$
\tau:=\inf \left\{n \geq 0: X_{n} \in B\right\}
$$

where $\inf \emptyset=+\infty$ by convention.
Proof. For any $n \in \mathbb{N}$, notice the facts that

$$
\begin{aligned}
&\{\tau=n\}=\left\{X_{n} \in B\right\} \bigcap \bigcap_{k=0}^{n-1}\left\{X_{k} \notin B\right\}, \\
&\{\tau \leq n\}=\bigcup_{k=0}^{n}\left\{X_{k} \in B\right\}, \\
&\left\{X_{k} \in B\right\} \in \mathcal{F}_{k} \subset \mathcal{F}_{n} \text { for any } k=0,1, \cdots, n .
\end{aligned}
$$

It follows that $\{\tau \leq n\} \in \mathcal{F}_{n}$ for any $n \geq 0$. Then τ is a stopping time w.r.t. \mathbb{F}.
Given a stochastic process X and a stopping time τ w.r.t. some filtration \mathbb{F}.

$$
X_{\tau \wedge n}(\omega):= \begin{cases}X_{n}(\omega) & \text { if } \tau(\omega) \geq n \\ X_{\tau(\omega)}(\omega) & \text { if } \tau(\omega)<n\end{cases}
$$

Theorem 2.1. Let \mathbb{F} be fixed filtration, X be a \mathbb{F}-martingale, and τ be a \mathbb{F}-stopping time. Then the process $\left(X_{\tau \wedge n}\right)_{n \geq 0}$ is still a \mathbb{F}-martingale.

Proof. Let us denote $Y_{n}:=X_{\tau \wedge n}$ for any $n \in \mathbb{N}$, then we can write for any $n \geq 0$,

$$
\begin{align*}
Y_{n} & =\sum_{k=0}^{n-1} X_{k} \mathbb{1}_{\{\tau=k\}}+X_{n} \mathbb{1}_{\{\tau \geq n\}}, \tag{5}\\
& =\sum_{k=0}^{n-1} X_{k} \mathbb{1}_{\{\tau=k\}}+X_{n} \mathbb{1}_{\{\tau>n-1\}}, \tag{6}
\end{align*}
$$

Now we verify the three conditions in the definition of martingale.
First, for any $n \in \mathbb{N}$, we have by (5)

$$
\left|Y_{n}\right| \leq \sum_{k=0}^{n}\left|X_{k}\right| .
$$

Then by the integrability of X, we know that

$$
\mathbb{E}\left[\left|Y_{n}\right|\right] \leq \sum_{k=0}^{n} \mathbb{E}\left[\left|X_{k}\right|\right]<+\infty
$$

Next, since τ is a \mathbb{F}-stopping time, we have for any $k=0,1, \cdots, n$,

$$
\{\tau=k\} \in \mathcal{F}_{k} \subset \mathcal{F}_{n}, \quad\{\tau>n-1\}=\{\tau \leq n-1\}^{C} \in \mathcal{F}_{n-1} \subset \mathcal{F}_{n} .
$$

Then $X_{k} \mathbb{1}_{\{\tau=k\}}$ is \mathcal{F}_{k}-measurable, hence \mathcal{F}_{n}-measurable and $X_{n} \mathbb{1}_{\{\tau>n-1\}}$ is also \mathcal{F}_{n}-measurable. Thus by (5), we have Y_{n} is \mathcal{F}_{n}-measurable.

Finally, we prove that for any $n \in \mathbb{N}$

$$
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n} \text { a.s. }
$$

By (5), we have

$$
\begin{aligned}
\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] & =\mathbb{E}\left[\sum_{k=0}^{n} X_{k} \mathbb{1}_{\{\tau=k\}}+X_{n+1} \mathbb{1}_{\{\tau>n\}} \mid \mathcal{F}_{n}\right]=\sum_{k=0}^{n} X_{k} \mathbb{1}_{\{\tau=k\}}+\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \mathbb{1}_{\{\tau>n\}} \\
& =\sum_{k=0}^{n-1} X_{k} \mathbb{1}_{\{\tau=k\}}+X_{n} \mathbb{1}_{\{\tau>n\}}=Y_{n} \text { a.s. }
\end{aligned}
$$

When X is martingale and τ is a stopping w.r.t. the same filtration, it follows that

$$
\mathbb{E}\left[X_{\tau \wedge n}\right]=\mathbb{E}\left[X_{0}\right]
$$

The question is that whether one has $\mathbb{E}\left[X_{\tau}\right]=\mathbb{E}\left[X_{0}\right]$.
In order to answer the question, we introduce a version of the dominated convergence theorem below.

Lemma 2.16. Let $\left\{Z_{n}\right\}_{n \geq 0}$ be a sequence of random variables with $\lim _{n \rightarrow \infty} Z_{n}=Z$ a.s. for some random variable Z and $\sup _{n \in \mathbb{N}}\left|Z_{n}\right| \leq M$ a.s. for some constant $M>0$, then

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[Z_{n}\right]=\mathbb{E}[Z]
$$

Proof. Let us denote that $X_{n}=\inf _{k \geq n}\left(2 M-\left|Z_{k}-Z\right|\right)$ for any $n \in \mathbb{N}$, then it is clear that $0 \leq X_{n} \leq X_{n+1}$ for all $n \geq 1$ and $\lim _{n \rightarrow \infty} X_{n}=2 M$ a.s.

By Lemma 1.10, we have

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]=\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n}\right]=2 M
$$

Then we know that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|Z_{n}-Z\right|\right] & \leq \lim _{n \rightarrow \infty} \mathbb{E}\left[\sup _{k \geq n}\left|Z_{k}-Z\right|\right]=-\lim _{n \rightarrow \infty} \mathbb{E}\left[\inf _{k \geq n}\left(2 M-\left|Z_{k}-Z\right|\right)-2 M\right] \\
& =-\lim _{n \rightarrow \infty} \mathbb{E}\left[\inf _{k \geq n}\left(2 M-\left|Z_{k}-Z\right|\right)\right]+2 M=-\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}\right]+2 M \\
& =-\mathbb{E}\left[\lim _{n \rightarrow \infty} X_{n}\right]+2 M=-\mathbb{E}\left[\lim _{n \rightarrow \infty} \inf _{k \geq n}\left(2 M-\left|Z_{k}-Z\right|\right)\right]+2 M \\
& =-\mathbb{E}[2 M]+2 M=0 .
\end{aligned}
$$

Hence, we have

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[Z_{n}\right]=\mathbb{E}[Z]
$$

Theorem 2.2. Let \mathbb{F} be a fixed filtration, X be a \mathbb{F}-martingale, and τ be a \mathbb{F}-stopping time. Assume that τ is bounded by some constant $m \geq 0$, or $\tau<\infty$ and the process $\left(X_{\tau \wedge n}\right)_{n \geq 0}$ is uniformly bounded. Then

$$
\mathbb{E}\left[X_{\tau}\right]=\mathbb{E}\left[X_{0}\right]
$$

Proof. First, we claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{\tau \wedge n}\right]=\mathbb{E}\left[X_{\tau}\right] \tag{7}
\end{equation*}
$$

By Theorem 2.1, we have $X_{\tau \wedge}$. is a \mathbb{F}-martingale, then for any $n \in \mathbb{N}$,

$$
\mathbb{E}\left[X_{\tau \wedge n}\right]=\mathbb{E}\left[X_{0}\right],
$$

which combined with (7), implies that

$$
\mathbb{E}\left[X_{\tau}\right]=\mathbb{E}\left[X_{0}\right] .
$$

Then it remains to prove the claim (7).
If τ is bounded by some constant $m \geq 0$, then for any $n \geq m$, we have $X_{\tau \wedge n}=X_{\tau}$, hence (7) remains true.

If $\left(X_{\tau \wedge n}\right)_{n \geq 0}$ is uniformly bounded, by Lemma 2.16 and $\lim _{n \rightarrow \infty} X_{\tau \wedge n}=X_{\tau}$ a.s., (7) remains true.

Example 2.17. Let $\left(\xi_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. random variables, $x \in \mathbb{N}$ be a positive integer, and

$$
X_{n}:=x+\sum_{k=1}^{n} \xi_{k} .
$$

Let us define

$$
\tau:=\inf \left\{n \geq 0: X_{n} \leq 0 \text { or } X_{n} \geq N\right\}
$$

Assume $\tau<\infty$, we can then compute the value of $\mathbb{E}\left[X_{\tau}\right]$ and $\mathbb{P}\left[X_{\tau}=0\right]$.

2.2 Convergence of martingale

Theorem 2.3. Let X be a submartingale or supermartingale such that $\sup _{n \geq 0} \mathbb{E}\left[\left|X_{n}\right|\right]<\infty$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=X_{\infty}, \text { for some r.v. } X_{\infty} \in L^{1}
$$

Proof. We will prove the case when X is a supermartingale, and the submartingale case follows by taking $-X$ as a supermartingale. Recall that the limit of a sequence of real numbers $\left(X_{n}\right)_{n \geq 1}$ does not exist if and only if one of the following holds:

1. $\lim _{n \rightarrow \infty} X_{n}=\infty$
2. $\lim _{n \rightarrow \infty} X_{n}=-\infty$
3. $\varliminf_{n \rightarrow \infty} X_{n}<\varlimsup_{n \rightarrow \infty} X_{n}$.

Set $A_{1}=\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=+\infty\right\}, A_{2}=\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=-\infty\right\}, A_{3}=\{\omega:$ $\left.\underline{\lim }_{n \rightarrow \infty} X_{n}(\omega)<+\overline{\lim }_{n \rightarrow \infty} X_{n}(\omega)\right\}$. If $\mathbb{P}\left[A_{1}\right]=\mathbb{P}\left[A_{2}\right]=\mathbb{P}\left[A_{3}\right]=0$, then the result follows.

Given $\epsilon>0$, we first assume that $\mathbb{P}\left[A_{1}\right] \geq \epsilon>0$. Then $\forall M>0, \exists N$ such that $X_{n} \geq M$ for $\forall n \geq N$. We know that $\mathbb{E}\left[\left|X_{n}\right|\right] \geq \mathbb{E}\left[\left|X_{n}\right| \mathbf{1}_{A_{1}}\right] \geq M \epsilon>C$ for large enough M, where $C=\sup _{n \geq 0} \mathbb{E}\left[\left|X_{n}\right|\right]$. This leads to a contradiction that $C=\sup _{n \geq 0} \mathbb{E}\left[\left|X_{n}\right|\right]<\infty$ and we can conclude that $\mathbb{P}\left[A_{1}\right]=0$. Similarly, we can prove $\mathbb{P}\left[A_{2}\right]=0$.

To show $P\left[A_{3}\right]=0$, choose two rational numbers a and b such that $\underline{\lim }_{n \rightarrow \infty} X_{n} \leq a<b \leq$ $\varlimsup_{n \rightarrow \infty} X_{n}$, we introduce two sequences of stopping times $\left(\sigma_{n}\right)_{n \geq 1},\left(\tau_{n}\right)_{n \geq 1}$ by:

$$
\begin{aligned}
\sigma_{1} & :=\inf \left\{n \geq 1: X_{n} \leq a\right\} \\
\tau_{1} & :=\inf \left\{n \geq \sigma_{1}: X_{n} \geq b\right\} \\
\sigma_{2} & :=\inf \left\{n \geq \tau_{1}: X_{n} \leq a\right\} \\
\tau_{2} & :=\inf \left\{n \geq \sigma_{2}: X_{n} \geq b\right\} .
\end{aligned}
$$

It can be observed that at time τ_{1}, the process X has crossed $[a, b]$ once, and at time τ_{2}, the process X has crossed $[a, b]$ twice. Let $U_{n}(a, b):=\max \left\{k: \tau_{k} \leq n\right\}$.

Claim that $\mathbb{E}\left[U_{n}(a, b)\right] \leq \frac{\mathbb{E}\left[\left|X_{n}-a\right|\right]}{b-a}$. If this holds, then $\sup _{n \geq 1} \mathbb{E}\left[U_{n}(a, b)\right] \leq \sup _{n \geq 1} \frac{\mathbb{E}\left[\left|X_{n}-a\right|\right]}{b-a}$. We know by Monotone Convergence Theorem that

$$
\mathbb{E}\left[\lim _{n \rightarrow \infty} U_{n}(a, b)\right]=\lim _{n \rightarrow \infty} \mathbb{E}\left[U_{n}(a, b)\right] \leq \sup _{n \geq 1} \frac{\mathbb{E}\left[\left|X_{n}-a\right|\right]}{b-a}<\infty .
$$

Thus $\lim _{n \rightarrow \infty} U_{n}(a, b)<\infty$ a.s., and $P\left[\underline{\lim }_{n \rightarrow \infty} X_{n} \leq a<b \leq \varlimsup_{n \rightarrow \infty} X_{n}\right]=0$. We then find from subadditivity that

$$
\begin{aligned}
\mathbb{P}\left[A_{3}\right] & =\mathbb{P}\left[{\underset{n i m}{n \rightarrow \infty}}^{\left.\lim _{n} \leq \varlimsup_{n \rightarrow \infty} X_{n}\right]}\right. \\
& =\mathbb{P}\left[\cup_{\substack{a<b \\
a, b \in \mathbb{Q}}}\left\{\underline{\lim }_{n \rightarrow \infty} X_{n} \leq a<b \leq \varlimsup_{n \rightarrow \infty} X_{n}\right\}\right] \\
& \leq \sum_{\substack{a<b \\
a, b \in \mathbb{Q}}} \mathbb{P}\left[\varliminf_{n \rightarrow \infty} X_{n} \leq a<b \leq \varlimsup_{n \rightarrow \infty} X_{n}\right] \\
& =0 .
\end{aligned}
$$

Finally, we prove $\mathbb{E}\left[U_{n}(a, b)\right] \leq \frac{\mathbb{E}\left[\left|X_{n}-a\right|\right]}{b-a}$. Let $H_{k}:=\sum_{i=1}^{\infty} \mathbf{1}_{\sigma_{i} \leq k<\tau_{i}}$ and $V_{n}:=\sum_{k=0}^{n-1} H_{k}\left(X_{k+1}-\right.$ X_{k}). We claim that $V=\left(V_{n}\right)_{n \geq 1}$ is a supermartingale. Indeed,

$$
\mathbb{E}\left[V_{n+1}-V_{n} \mid \mathcal{F}_{n}\right]=H_{n} \mathbb{E}\left[X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right] \leq 0 .
$$

Thus we know that $V_{n} \geq(b-a) \cdot U_{n}(a, b)-\left|X_{n}-a\right|$ by taking the first term and the second term as profit from the crossing event and loss of the last investment, respectively. Then

$$
0 \geq \mathbb{E}\left[V_{n}\right] \geq \mathbb{E}\left[(b-a) U_{n}(a, b)\right]-\mathbb{E}\left[\left|X_{n}-a\right|\right] .
$$

We obtain the desired result.
Theorem 2.4. Let X be a martingale such that $\sup _{n \geq 0} \mathbb{E}\left[\left|X_{n}\right|^{2}\right]<\infty$. Then

$$
\lim _{n \rightarrow \infty} X_{n}=X_{\infty}, \text { for some r.v. } X_{\infty} \in L^{2}
$$

and

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}-X_{\infty}\right|^{2}\right]=0
$$

Proof. Recall from Cauchy-Schwarz inequality that $\sup _{n \geq 1} \mathbb{E}\left[\left|X_{n}\right|\right] \leq \sup _{n \geq 1} \sqrt{\mathbb{E}\left[\left|X_{n}\right|^{2}\right]} \leq \infty$. Then $\lim _{n \rightarrow \infty} X_{n}$ exists by 2.3.

We first denote that $\Delta X_{n}:=X_{n}-X_{n-1}, n \geq 1$. We claim that

$$
\mathbb{E}\left[X_{n}^{2}\right]=\mathbb{E}\left[X_{0}^{2}\right]+\sum_{k=1}^{n} \mathbb{E}\left[\Delta X_{n}^{2}\right]
$$

Indeed, $X_{n}=X_{0}+\Delta X_{1}+\cdots+\Delta X_{n}$, then

$$
X_{n}^{2}=X_{0}^{2}+\Delta X_{1}^{2}+\cdots+\Delta X_{n}^{2}+\sum_{\substack{i \neq j \\ 1 \leq i, j \leq n}} \Delta X_{i} \Delta X_{j}+\sum_{i=1}^{n} 2 X_{0} \Delta X_{i}
$$

and

$$
\begin{aligned}
\mathbb{E}\left[X_{0} \Delta X_{i}\right] & =\mathbb{E}\left[\mathbb{E}\left[X_{0} \Delta X_{i} \mid \mathcal{F}_{i-1}\right]\right] \\
& =\mathbb{E}\left[X_{0} \mathbb{E}\left[\Delta \mid \mathcal{F}_{i-1}\right]\right] \\
& =0
\end{aligned}
$$

Let $i<j$, we know that

$$
\begin{aligned}
\mathbb{E}\left[\Delta X_{i} \Delta X_{j}\right] & =\mathbb{E}\left[\mathbb{E}\left[\Delta X_{i} \Delta X_{j} \mid \mathcal{F}_{j-1}\right]\right] \\
& =\mathbb{E}\left[\Delta X_{i} \mathbb{E}\left[\Delta X_{j} \mid \mathcal{F}_{j-1}\right]\right] \\
& =0
\end{aligned}
$$

Thus,

$$
\lim _{n \rightarrow \infty} \mathbb{E}\left[X_{n}^{2}\right]=\mathbb{E}\left[X_{0}^{2}\right]+\sum_{k=1}^{\infty} \mathbb{E}\left[\Delta X_{k}^{2}\right] \leq C \leq+\infty
$$

where $C:=\sup _{n \geq 1} \mathbb{E}\left[\left|X_{n}\right|^{2}\right]<\infty$. Therefore, for $m>n$,

$$
\begin{aligned}
\mathbb{E}\left[\left(X_{m}-X_{n}\right)^{2}\right] & =\mathbb{E}\left[\left(\sum_{k=n+1}^{m} \Delta X_{k}\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{k=n+1}^{m} \Delta X_{k}^{2}\right]+\mathbb{E}\left[\sum_{\substack{i \neq j \\
n+1 \leq i, j \leq m}} \Delta X_{i} \Delta X_{j}\right] \\
& =\sum_{k=n+1}^{m} \mathbb{E}\left[\Delta X_{k}^{2}\right] \rightarrow 0, \text { as } m, n \rightarrow \infty
\end{aligned}
$$

Then $\left(X_{n}\right)_{n \geq 1}$ is a Cauchy sequence in L^{2} space. From the completeness of L^{2}, we know by 1.9 that X_{n} converges to X_{∞} in L^{2} space, i.e. $\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|X_{n}-X_{\infty}\right|^{2}\right]=0$.

Application I: Law of large number

Theorem 2.5 (Law of large number). Let $\left(\xi_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. random variables, such that $\mathbb{E}\left[\left|\xi_{i}\right|\right]<\infty$. Then

$$
\frac{1}{n} \sum_{k=1}^{n} \xi_{k} \longrightarrow \mathbb{E}\left[X_{1}\right], \text { a.s. }
$$

In the following, we will use the theorem of convergence of martingale to prove the above theorem (law of large number).

Lemma 2.18 (Kronecker). Let $\left(x_{n}\right)_{n \geq 1}$ be a sequence of real numbers such that

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} k^{-1} x_{k} \text { exists. }
$$

Then

$$
\frac{1}{n} \sum_{k=1}^{n} x_{k} \longrightarrow 0
$$

Proof. Let $m_{n}:=\sum_{k=1}^{n} k^{-1} x_{k}$ for all $n \geq 1$, let us denote $m_{\infty}:=\lim _{n \rightarrow \infty} m_{n}$. Notice that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} m_{k}=m_{\infty}, \quad \text { and } \quad \sum_{k=1}^{n} m_{k}=(n+1) m_{n}-\sum_{k=1}^{n} x_{k} .
$$

It follows immediately that $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} x_{k}=0$.
Proof of Theorem 2.5. In view of Kronecker's Lemma, it is enough to assume in addition that $E\left[X_{1}\right]=0$ and then prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty} k^{-1} X_{k}, \text { exists a.s. } \tag{8}
\end{equation*}
$$

Let us define

$$
M_{n}:=\sum_{k=1}^{n} k^{-1} X_{k}, \quad n \geq 1 .
$$

Since it is assumed that $\mathbb{E}\left[X_{k}\right]=0$, we observe that $\left(M_{n}\right)_{n \geq 1}$ is a martingale.
(i) When X_{1} is square integrable, i.e. $\mathbb{E}\left[\left|X_{1}\right|^{2}\right]<\infty$, we obtain that

$$
\mathbb{E}\left[\left|M_{n}\right|^{2}\right]=\sum_{k=1}^{n} \frac{1}{k^{2}} \mathbb{E}\left[\left|X_{k}\right|^{2}\right]=\mathbb{E}\left[\left|X_{1}\right|^{2}\right] \sum_{k=1}^{n} \frac{1}{k^{2}} .
$$

By the theorem of convergence of martingale, it follows that there exists a square-integrable random variable M_{∞} such that

$$
\lim _{n \rightarrow \infty} M_{n}=M_{\infty}, \text { a.s. }
$$

and we hence conclude of the proof of (8).
(ii) When we only have $\mathbb{E}\left[\left|X_{1}\right|\right]<\infty$, let us define

$$
Y_{n}:=X_{n} \mathbf{1}_{\left\{\left|X_{n}\right| \leq n\right\}}, \quad n \geq 1
$$

Then

$$
\sum_{n \geq 1} \mathbb{P}\left[X_{n} \neq Y_{n}\right]=\sum_{n \geq 1} \mathbb{P}\left[\left|X_{1}\right|>n\right]=\mathbb{E}\left[\sum_{n \geq 1} \mathbf{1}_{\left\{\left|X_{1}\right|>n\right\}} \leq \mathbb{E}\left[\left|X_{1}\right|\right]<\infty .\right.
$$

By Borel-Cantelli, il follows that there exists a random variable M such that

$$
X_{n}=Y_{n}, \text { for all } n \geq M, \text { a.s. }
$$

Therefore, whenever the last two limits below exist, one has

$$
\lim _{n \infty} \frac{1}{n} \sum_{k=1}^{n} X_{k}=\lim _{n \infty} \frac{1}{n} \sum_{k=1}^{n} Y_{k}=\lim _{n \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[Y_{k}\right]+\lim _{n \infty} \frac{1}{n} \sum_{k=1}^{n}\left(Y_{k}-\mathbb{E}\left[Y_{k}\right]\right)
$$

By the definition of Y_{k}, we notice that $\lim _{k \rightarrow \infty} \mathbb{E}\left[Y_{k}\right]=\mathbb{E}\left[X_{1}\right]=0$, so that

$$
\lim _{n \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{E}\left[Y_{k}\right]=0
$$

To study the last limit, let us define $Z_{n}:=n^{-1}\left(Y_{n}-\mathbb{E}\left[Y_{n}\right]\right)$ and claim that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathbb{E}\left[\left|Z_{n}\right|^{2}\right]<\infty \tag{9}
\end{equation*}
$$

Then by the arguments in Item (i), we conclude that

$$
\lim _{n \infty} \frac{1}{n} \sum_{k=1}^{n}\left(Y_{k}-\mathbb{E}\left[Y_{k}\right]\right)=0,
$$

which implies the requires result in the statement.
To finish the proof, it is enough to prove the claim in (9). In fact, we notice that

$$
\sum_{n \geq 1} \mathbb{E}\left[\left|Z_{n}\right|^{2}\right]=\sum_{n \geq 1} n^{-2} \operatorname{Var}\left[Y_{n}\right] \leq \sum_{n \geq 1} n^{-2} \mathbb{E}\left[\left|Y_{n}\right|^{2}\right]=\mathbb{E}\left[X_{1}^{2} \sum_{n \geq 1} n^{-2} \mathbf{1}_{\left\{\left|X_{1}\right| \leq n\right\}}\right]=\mathbb{E}\left[X_{1}^{2} f\left(\left|X_{1}\right|\right)\right],
$$

where $f(x):=\sum_{x \leq n} n^{-2}$ satisfies that, for some constant $C>0, f(x) \leq C x^{-1}$ for all $x \geq 0$. Therefore,

$$
\sum_{n \geq 1} \mathbb{E}\left[\left|Z_{n}\right|^{2}\right] \leq \mathbb{E}\left[X_{1}^{2} f\left(\left|X_{1}\right|\right)\right] \leq C \mathbb{E}\left[\left|X_{1}\right|\right]<\infty
$$

which proves (9) and hence concludes the proof.
Application II: Stochastic Gradient Algorithm Let $\left(X_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. random variables with the same law of X. Then we give the stochastic gradient algorithm

$$
\begin{equation*}
\theta_{k+1}=\theta_{k}-\gamma_{k+1} F\left(\theta_{k}, X_{k+1}\right), \forall k \in \mathbb{N} \tag{10}
\end{equation*}
$$

where $F: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}$ satisfies $\mathbb{E}[F(\theta, X)]=f(\theta)$.
To make the algorithm converges, we make the following assumptions:
Assumption 2.6. - $\gamma_{k}>0, \sum_{k=1}^{\infty} \gamma_{k}=+\infty, \sum_{k=1}^{\infty} \gamma_{k}^{2}<+\infty$

- There exists a point $\theta^{*} \in \mathbb{R}^{d}$ such that

$$
\left\langle\theta_{k}-\theta^{*}, f\left(\theta_{k}\right)\right\rangle>0, \forall \theta_{k} \neq \theta^{*}
$$

- F is uniformly bounded by some constant $C>0$.

Theorem 2.7. Given $F: \mathbb{R}^{d} \times \mathbb{R} \rightarrow \mathbb{R}^{d}, f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \theta_{0} \in \mathbb{R}$ and constants $\left\{\gamma_{k}\right\}_{k \geq 1}$, we define a sequence of random variables $\left\{\theta_{k}\right\}_{k \geq 1}$ by (10) iteratively, then under Assumption 2.6, $\lim _{k \rightarrow \infty} \theta_{k}=\theta^{*}$ a.s.

Remark 2.19. If $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is strictly convex, θ^{*} is the minimizer of $g(\theta)$, then for any $\theta \neq \theta^{*}$, $\left\langle\theta-\theta^{*}, \nabla g(\theta)\right\rangle>0$.

Proof. Let us define the \mathbb{F}-predictable process $\left(S_{n}\right)_{n \geq 0}$ by

$$
S_{n}:=\sum_{k=0}^{n-1} \gamma_{k+1}^{2} \mathbb{E}\left[\left|F\left(\theta_{k}, X_{k+1}\right)\right|^{2} \mid \mathcal{F}_{k}\right]
$$

where $\mathcal{F}_{0}:=\{\phi, \Omega\}, \mathcal{F}_{k}:=\sigma\left(X_{1}, \cdots, X_{k}\right)$ for any $k \geq 1$ and $\mathbb{F}:=\left(\mathcal{F}_{k}\right)_{k \geq 0}$. Then by the uniformly boundedness of F, we have

$$
S_{n} \leq \sum_{k=0}^{n-1} \gamma_{k+1}^{2} C^{2} \leq C^{2} \sum_{k=0}^{\infty} \gamma_{k+1}^{2}
$$

Hence by the martingale convergence theorem, we know the existence of $S_{\infty}:=\lim _{n \rightarrow \infty} S_{n}$ and

$$
S_{\infty}=\sum_{k=0}^{\infty} \gamma_{k+1}^{2} \mathbb{E}\left[\left|F\left(\theta_{k}, X_{k+1}\right)\right|^{2} \mid \mathcal{F}_{k}\right] \leq C^{2} \sum_{k=0}^{\infty} \gamma_{k+1}^{2} \text { a.s. }
$$

Next, we define the adapted process $\left(Z_{n}\right)_{n \geq 0}$ by $Z_{n}:=\left|\theta_{n}-\theta^{*}\right|^{2}-S_{n}$ for any $n \in \mathbb{N}$ and we claim that $\left(Z_{n}\right)_{n \geq 0}$ is a \mathbb{F}-supermartingale. First, observe that

$$
\begin{aligned}
\mathbb{E}\left[\left|Z_{n}\right|\right] & \leq \mathbb{E}\left[\left|S_{n}\right|+2\left|\theta^{*}\right|^{2}+2\left|\theta_{n}\right|^{2}\right] \\
& \leq C^{2} \sum_{k=0}^{\infty} \gamma_{k+1}^{2}+2\left|\theta^{*}\right|^{2}+2 \mathbb{E}\left[\left|\theta_{0}+\sum_{k=0}^{n-1} \gamma_{k+1} F\left(\theta_{k}, X_{k+1}\right)\right|^{2}\right] \\
& \leq C^{2} \sum_{k=0}^{\infty} \gamma_{k+1}^{2}+2\left|\theta^{*}\right|^{2}+4\left|\theta_{0}\right|^{2}+4 n \mathbb{E}\left[\left|S_{n}\right|\right] \\
& \leq(4 n+1) C^{2} \sum_{k=0}^{\infty} \gamma_{k+1}^{2}+2\left|\theta^{*}\right|^{2}+4\left|\theta_{0}\right|^{2}<\infty
\end{aligned}
$$

Next, for any $n \in \mathbb{N}$,

$$
\begin{aligned}
\mathbb{E}\left[Z_{n+1} \mid \mathcal{F}_{n}\right]= & \left.\mathbb{E}\left[\left|\theta_{n+1}-\theta^{*}\right|^{2}-S_{n+1} \mid \mathcal{F}_{n}\right]\right] \\
= & -S_{n+1}+\left|\theta_{n}-\theta^{*}\right|^{2}+\mathbb{E}\left[\left|\gamma_{n+1} F\left(\theta_{n}, X_{n+1}\right)\right|^{2} \mid \mathcal{F}_{n}\right] \\
& -2 \mathbb{E}\left[\left\langle\theta_{n}-\theta^{*}, \gamma_{n+1} F\left(\theta_{n}, X_{n+1}\right)\right\rangle \mid \mathcal{F}_{n}\right] \\
= & -S_{n+1}+\left|\theta_{n}-\theta^{*}\right|^{2}+\mathbb{E}\left[\left|\gamma_{n+1} F\left(\theta_{n}, X_{n+1}\right)\right|^{2} \mid \mathcal{F}_{n}\right]-2 \gamma_{n+1}\left\langle\theta_{n}-\theta^{*}, f\left(\theta_{n}\right)\right\rangle \\
\leq & -S_{n+1}+\left|\theta_{n}-\theta^{*}\right|^{2}+\mathbb{E}\left[\left|\gamma_{n+1} F\left(\theta_{n}, X_{n+1}\right)\right|^{2} \mid \mathcal{F}_{n}\right] \\
= & Z_{n} \text { a.s. }
\end{aligned}
$$

Now let $K:=C^{2} \sum_{k=0}^{\infty} \gamma_{k+1}^{2}$, we have $\left(Z_{n}+K\right)_{n \geq 0}$ is a positive supermaringale and

$$
\sup _{n \geq 0} \mathbb{E}\left[\left|Z_{n}+K\right|\right]=\sup _{n \geq 0} \mathbb{E}\left[Z_{n}+K\right] \leq \mathbb{E}\left[Z_{0}+K\right]<\infty
$$

By the martingale convergence theorem, if follows that

$$
\lim _{n \rightarrow \infty} Z_{n}+K=Z_{\infty}+K, \text { for some r.v. } Z_{\infty} \in L^{1}
$$

Then let $L:=S_{\infty}+Z_{\infty}$, we know that

$$
\lim _{n \rightarrow \infty}\left|\theta_{n}-\theta^{*}\right|^{2}=L \text { a.s. }
$$

and we claim that $L=0$ a.s.
Let $A_{\delta}:=\{\omega: L(\omega)>\delta\}$, then it is sufficient to prove that $\mathbb{P}\left[A_{\delta}\right]=0$ for any $\delta>0$.
We assume by contradiction that $\mathbb{P}\left[A_{\delta}\right]>0$, then $\eta:=\inf _{\delta \leq\left|\theta_{k}-\theta^{*}\right|^{2} \leq 2 L}\left\langle\theta_{k}-\theta^{*}, f\left(\theta_{k}\right)\right\rangle>0$ on A_{δ}, and we have

$$
\sum_{k=0}^{\infty} \gamma_{k+1}\left\langle\theta_{k}-\theta^{*}, f\left(\theta_{k}\right)\right\rangle \geq \sum_{k=0}^{\infty} \gamma_{k+1} \eta=+\infty, \text { on } A_{\delta}
$$

Then the monotone convergence theorem gives that

$$
\sum_{k=0}^{\infty} \mathbb{E}\left[\gamma_{k+1}\left\langle\theta_{k}-\theta^{*}, f\left(\theta_{k}\right)\right\rangle\right]=+\infty
$$

However, by the definition of the algorithm, we have

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \mathbb{E}\left[\gamma_{k+1}\left\langle\theta_{k}-\theta^{*}, f\left(\theta_{k}\right)\right\rangle\right] \\
= & \sum_{k=0}^{\infty} \mathbb{E}\left[\left\langle\theta_{k}-\theta^{*}, \gamma_{k+1} F\left(\theta_{k}, X_{k+1}\right)\right\rangle\right] \\
= & \frac{1}{2} \sum_{k=0}^{\infty} \mathbb{E}\left[\left|\theta_{k+1}-\theta^{*}\right|^{2}-\left|\theta_{k}-\theta^{*}\right|^{2}-\left|\gamma_{k+1} F\left(\theta_{k}, X_{k+1}\right)\right|^{2}\right] \\
= & \frac{1}{2}\left(\lim _{n \rightarrow \infty} \mathbb{E}\left[\left|\theta_{k}-\theta^{*}\right|^{2}\right]-\mathbb{E}\left[\left|\theta_{0}-\theta^{*}\right|^{2}\right]-\sum_{k=0}^{\infty} \gamma_{k+1}^{2} \mathbb{E}\left[\left|F\left(\theta_{k}, X_{k+1}\right)\right|^{2}\right]\right) \\
= & \frac{1}{2} \mathbb{E}\left[S_{\infty}+Z_{\infty}-\left|\theta_{0}-\theta^{*}\right|^{2}-S_{\infty}\right] \\
= & \frac{1}{2} \mathbb{E}\left[Z_{\infty}-\left|\theta_{0}-\theta^{*}\right|^{2}\right]<\infty .
\end{aligned}
$$

Now we have a contradiction and complete the proof.

3 Discrete time Markov chain

3.1 Definition and examples

Let us recall that a stochastic process $X=\left(X_{k}\right)_{k \geq 0}$ is a family of random variables indexed by time $k \geq 0$. In this section, we consider the case that X takes value in a countable state space S.

Remark 3.1. The state space S could be finite, e.g. $S=\left\{x_{1}, \cdots, x_{n}\right\}$, or infinite, e.g. $S=$ $\mathbb{N}=\{0,1,2, \cdots\}$.

Definition 3.2. A stochastic process $X=\left(X_{n}\right)_{n \geq 0}$ taking value in a countable space S is called a Markov chain if, for all $x_{0}, x_{1}, \cdots, x_{n}, x_{n+1} \in S$, one has

$$
\mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{n}=x_{n}, \cdots, X_{0}=x_{0}\right]=\mathbb{P}\left[X_{n+1}=x_{n+1} \mid X_{n}=x_{n}\right] .
$$

Example 3.3 (Random walk). Let $\left(\xi_{k}\right)_{k \geq 1}$ be a sequence of i.i.d. random variables such that

$$
\mathbb{P}\left[\xi_{1}=1\right]=p, \quad \mathbb{P}\left[\xi_{1}=-1\right]=1-p .
$$

Let

$$
X_{n}:=\sum_{k=1}^{n} \xi_{k}, \quad n \geq 0
$$

One observes that X takes value in Z , and one can compute that

$$
\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}=x_{n}, \cdots, X_{1}=x_{1}\right]=p f\left(x_{n}+1\right)+(1-p) f\left(x_{n}-1\right),
$$

and

$$
\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}=x_{n}\right]=p f\left(x_{n}+1\right)+(1-p) f\left(x_{n}-1\right) .
$$

Thus, $\left(X_{n}\right)_{n \geq 0}$ is a Markov chain.
Notice also that, when $p=\frac{1}{2},\left(X_{n}\right)_{n \geq 0}$ is a martingale.
Proposition 3.4. A process X is a Markov chain if and only if

$$
\mathbb{E}\left[f\left(X_{n+1}\right) \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[f\left(X_{n+1}\right) \mid X_{n}\right],
$$

for all bounded function $f: S \longrightarrow \mathbb{R}$, where $\mathcal{F}_{n}:=\sigma\left(X_{0}, \cdots, X_{n}\right)$.
Proof. to be completed.
Definition 3.5. A Markov chain X is called homogeneous if

$$
\mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right]=\mathbb{P}\left[X_{1}=y \mid X_{0}=x\right], \text { for all } n \geq 0, x, y \in S .
$$

In the following, we will only consider homogeneous Markov chain!
Definition 3.6. Let X be a Markov chain.
(i) For all $x, y \in S, P(x, y):=\mathbb{P}\left[X_{n+1}=y \mid X_{n}=x\right]$ is called the transition probability from x to y.
(ii) The matrix $P=(P(x, y))_{x, y \in S}$ is then called the transition matrix.
(iii) The vector $\mu=(\mu(x))_{x \in S}$ defined by $\mu(x):=\mathbb{P}\left[X_{0}=x\right]$ is the initial distribution of X.

Example 3.7. (i) Ranom walk.
(ii) Gambler's ruin.
(iii) Ehrenfest model.

Remark 3.8. Let us recall that

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} \Longleftrightarrow \mathbb{P}[A \cap B]=\mathbb{P}[A \mid B] \mathbb{P}[B] .
$$

Proposition 3.9 (Chapman-Kolmogorov Equation). Let X be a Markov chain with transition matrix P. Then the joint law of $\left(X_{0}, X_{1}, \cdots, X_{n}\right)$ is given by

$$
\mathbb{P}\left[X_{0}=x_{0}, \cdots, X_{n}=x_{n}\right]=\mathbb{P}\left[X_{0}=x_{0}\right] P\left(x_{0}, x_{1}\right) \cdots P\left(x_{n-1}, x_{n}\right) .
$$

Proof. to be completed.
Lemma 3.10. One has

$$
\mathbb{P}\left[X_{0}=x_{0}, X_{n}=x_{n}\right]=\mathbb{P}\left[X_{0}=x_{0}\right] P^{n}\left(x_{0}, x_{n}\right)
$$

and

$$
\mathbb{P}\left[X_{m+n}=y \mid X_{0}=x\right]=P^{m+n}(x, y) .
$$

Proof. to be completed.

3.2 Recurrence, transience

Let us consider a Markov chain $X=\left(X_{n}\right)_{n \geq 0}$, with state space $S=\left\{x_{1}, x_{2}, \cdots\right\}$ and transition matrix P. Let us use the notation

$$
\mathbb{P}_{x}[A]:=\mathbb{P}\left[A \mid X_{0}=x\right] .
$$

Definition 3.11. A state $x \in S$ is communicate with state $y \in S$, denoted by $x \rightarrow y$, if

$$
\mathbb{P}_{x}\left[\tau_{y}<\infty\right]=\mathbb{P}\left[\tau_{y}<\infty \mid X_{0}=x\right]>0,
$$

where $\tau_{y}:=\min \left\{n \geq 0: X_{n}=y\right\}$.
Notice that $\tau_{y}<\infty$ means that $X_{n}=y$ for some $n \geq 0$; and $\tau_{y}=\infty$ means that $X_{n} \neq y$ for all $n \geq 0$.

Proposition 3.12. For $x, y \in S$, one has $x \rightarrow y$ if and only if $P^{n}(x, y)>0$ for some $n \geq 0$.
Proof. (i) If $x \rightarrow y$ so that $\mathbb{P}_{x}\left[\tau_{y}<\infty\right]>0$, then

$$
0<\mathbb{P}_{x}\left[\tau_{y}<\infty\right]=\mathbb{P}_{x}\left[\cup_{n \geq 0}\left\{\tau_{y} \leq n\right\}\right]=\lim _{n \rightarrow \infty} \mathbb{P}_{x}\left[\tau_{y} \leq n\right],
$$

since $\left\{\tau_{y} \leq n\right\} \subset\left\{\tau_{y} \leq n+1\right\}$. Thus, there exists some $n \geq 0$ such that

$$
\mathbb{P}_{x}\left[\tau_{y} \leq n\right]>0 .
$$

Further, as $\left\{\tau_{y} \leq n\right\}=\cup_{k=0}^{n}\left\{\tau_{y}=k\right\}$, then for some $k \geq 0$, one has

$$
\mathbb{P}_{x}\left[\tau_{y}=k\right]>0 .
$$

Therefore,

$$
P^{k}(x, y)=\mathbb{P}_{x}\left[X_{k}=y\right] \geq \mathbb{P}_{x}\left[X_{0}=x, X_{1} \neq y, \cdots, X_{k-1} \neq y, X_{k}=y\right]=\mathbb{P}_{x}\left[\tau_{y}=k\right]>0 .
$$

(ii) Next, if $P^{n}(x, y)>0$ for some $n \geq 0$, then

$$
\mathbb{P}_{x}\left[\tau_{y}<\infty\right] \geq \mathbb{P}_{x}\left[\tau_{y} \leq n\right] \geq \mathbb{P}_{x}\left[X_{n}=y\right]=P^{n}(x, y)>0
$$

Hence $x \rightarrow y$.
Proposition 3.13. Let $x, y, z \in S$, then

- $x \rightarrow x$;
- $x \rightarrow y$ and $y \rightarrow z$ implies that $x \rightarrow z$.

Proof. (i) By its definition, one has $\tau_{x}:=\min \left\{n \geq 0: X_{0}=x\right\}=0<\infty, \mathbb{P}_{x}$-a.s. so that $x \rightarrow x$.
(ii) If $x \rightarrow y$ and $y \rightarrow z$, then there exist $m \geq 0$ and $n \geq 0$ such that $P^{m}(x, y)>0$ and $P^{n}(y, z)>0$. Then $P^{m+n}(x, z) \geq P^{m}(x, y) P^{n}(y, z)>0$, and hence $x \rightarrow z$.

Definition 3.14. (i) Let $x, y \in S$, we say x and y are intercommunicate, denoted by $x \leftrightarrow y$, if $x \rightarrow y$ and $y \rightarrow x$.
(ii) A subset $B \subset S$ is called irreducible if $x \leftrightarrow y$ for all $x, y \in B$.
(iii) If S itself is irreducible, we say that the Markov chain is irreducible, or the transition matrix P is irreducible.

Example 3.15. (i) Ranom walk.
(ii) Gambler's ruin.
(iii) Ehrenfest model.

Let us denote by N_{x} the number of times that X stays at point $x \in S$, i.e.

$$
N_{x}:=\sum_{n=0}^{\infty} \mathbf{1}_{\left\{X_{n}=x\right\}} .
$$

Further, let

$$
\tau_{x}^{1}:=\min \left\{n \geq 1: X_{n}=x\right\}
$$

Definition 3.16. (i) We say $x \in S$ is recurrent if $\mathbb{P}_{x}\left[\tau_{x}^{1}<\infty\right]=1$.
(ii) We say $x \in S$ is transiant if $\mathbb{P}_{x}\left[\tau^{1}<\infty\right]<1$.

Remark 3.17. Notice that

$$
\tau_{x}^{1}=\infty, \mathbb{P}_{x} \text {-a.s. } \Longleftrightarrow N_{x}=1, \mathbb{P}_{x} \text {-a.s. }
$$

Theorem 3.1. (i) If x is recurrent, i.e. $\mathbb{P}_{x}\left[\tau_{x}^{1}<\infty\right]=1$. Then $\mathbb{P}_{x}\left[N_{x}=\infty\right]=1$.
(ii) If x is transient, i.e. $\alpha:=\mathbb{P}_{x}\left[\tau_{x}^{1}=\infty\right]=1-\mathbb{P}_{x}\left[\tau_{x}^{1}<\infty\right]>0$. Then $\mathbb{P}_{x}\left[N_{x}=n\right]=$ $\alpha(1-\alpha)^{n-1}$, for all $n \geq 1$. Consequently, $\mathbb{E}_{x}\left[N_{x}\right]=1 / \alpha$.

Lemma 3.18. Let $\tau_{x}^{n+1}:=\min \left\{k \geq \tau_{x}^{n}+1: X_{k}=x\right\}$, with $\tau_{x}^{0} \equiv 0$. Then for any $k_{1}<k_{2}<$ $\cdots<k_{n+1}$, one has

$$
\begin{equation*}
\mathbb{P}_{x}\left[\tau_{x}^{1}=k_{1}, \tau_{x}^{2}=k_{2}, \cdots, \tau_{x}^{n+1}=k_{n+1}\right]=\mathbb{P}_{x}\left[\tau_{x}^{1}=k_{1}, \cdots, \tau_{x}^{n}=k_{n}\right] \mathbb{P}_{x}\left[\tau_{x}^{1}=k_{n+1}-k_{n}\right] . \tag{11}
\end{equation*}
$$

Consequently, $\left(\tau_{x}^{n+1}-\tau_{x}^{n}\right)_{n \geq 0}$ is an i.i.d. sequence of random variables.
Proof. We only provide the proof for the case $n=1$, where the proof for the general case $n>1$ is almost the same, but with more heavy notations.

$$
\begin{aligned}
& \mathbb{P}_{x}\left[\tau_{x}^{1}=k_{1}, \tau_{x}^{2}=k_{2}\right] \\
= & \mathbb{P}_{x}\left[X_{0}=x, X_{1} \neq x, \cdots, X_{k_{1}-1} \neq x, X_{k_{1}}=x, X_{k_{1}+1} \neq x, \cdots, X_{k_{2}-1} \neq x, X_{k_{2}}=x\right] \\
= & \mathbb{P}_{x}\left[X_{0}=x, X_{1} \neq x, \cdots, X_{k_{1}-1} \neq x, X_{k_{1}}=x\right] \\
& \cdot \mathbb{P}_{x}\left[X_{k_{1}}=x, X_{k_{1}+1} \neq x, \cdots, X_{k_{2}-1} \neq x, X_{k_{2}}=x \mid X_{0}=x, X_{1} \neq x, \cdots, X_{k_{1}-1} \neq x, X_{k_{1}}=x\right] \\
= & \mathbb{P}_{x}\left[X_{0}=x, X_{1} \neq x, \cdots, X_{k_{1}-1} \neq x, X_{k_{1}}=x\right] \\
& \cdot \mathbb{P}_{x}\left[X_{k_{1}}=x, X_{k_{1}+1} \neq x, \cdots, X_{k_{2}-1} \neq x, X_{k_{2}}=x \mid X_{k_{1}}=x\right] \\
= & \mathbb{P}_{x}\left[\tau_{x}^{1}=k_{1}\right] \mathbb{P}_{x}\left[\tau_{x}^{1}=k_{2}-k_{1}\right] .
\end{aligned}
$$

This proves (11) for the case $n=1$.
Next, notice that

$$
\begin{aligned}
\mathbb{P}_{x}\left[\tau_{x}^{1}=k_{1}, \tau_{x}^{2}=k_{2}\right] & =\mathbb{P}_{x}\left[\tau_{x}^{1}=k_{1}, \tau_{x}^{2}-\tau_{x}^{1}=k_{2}-k_{1}\right] \\
& =\mathbb{P}_{x}\left[\tau_{x}^{1}=k_{1}\right] \mathbb{P}_{x}\left[\tau_{x}^{2}-\tau_{x}^{1}=k_{2}-k_{1} \mid \tau_{x}^{1}=k_{1}\right]
\end{aligned}
$$

This implies that, for all $k_{1} \geq 1$,

$$
\mathbb{P}_{x}\left[\tau_{x}^{1}=n_{1}\right]=\mathbb{P}_{x}\left[\tau_{x}^{2}-\tau_{x}^{1}=n_{1} \mid \tau_{x}^{1}=k_{1}\right], \mathbb{P}_{x} \text {-a.s. }
$$

Hence $\tau_{x}^{2}-\tau_{x}^{1}$ is independent of τ_{x}^{1} and has the same distribution as τ_{x}^{1}.
Proof of Theorem 3.1. Let $\alpha:=\mathbb{P}_{x}\left[\tau_{x}^{1}=\infty\right]$, we claim that

$$
\mathbb{P}_{x}\left[N_{x}>n\right]=\mathbb{P}_{x}\left[\tau_{x}^{1}<\infty\right]^{2}=(1-\alpha)^{n} .
$$

Indeed, as $\left\{N_{x}>n\right\}=\left\{\tau_{x}^{n}<\infty\right\}$, one then has

$$
\mathbb{P}_{x}\left[N_{x}>n\right]=\mathbb{P}_{x}\left[\tau_{x}^{n}<\infty\right]=\mathbb{P}_{x}\left[\tau_{x}^{1}<\infty, \tau_{x}^{2}-\tau_{x}^{1}<\infty, \cdots, \tau_{x}^{n}-\tau_{x}^{n-1}<\infty\right] .
$$

Applying Lemma 3.18, it follows that

$$
\mathbb{P}_{x}\left[N_{x}>n\right]=\mathbb{P}_{x}\left[\tau_{x}^{1}<\infty\right]^{2}=(1-\alpha)^{n}
$$

When x is recurrent, i.e. $\mathbb{P}_{x}\left[\tau_{x}^{1}<\infty\right]=1$, and hence $\alpha=0$, one has $\mathbb{P}_{x}\left[N_{x}>n\right]=1$ for all $n \geq 1$. Thus $\mathbb{P}_{x}\left[N_{x}=\infty\right]=1$.

When x is transient so that $\alpha>0$, one has

$$
\mathbb{P}_{x}\left[N_{x}=n\right]=\mathbb{P}_{x}\left[N_{x}>n-1\right]-\mathbb{P}_{x}\left[N_{x}>n\right]=(1-\alpha)^{n-1}-(1-\alpha)^{n}=\alpha(1-\alpha)^{n-1} .
$$

We hence conclude the proof.

Proposition 3.19. The state $x \in S$ is recurrent if and only if

$$
\sum_{n=0}^{\infty} P^{n}(x, x)=\infty .
$$

Proof. If x is recurrent, then $\mathbb{P}_{x}\left[N_{x}=\infty\right]=1$ and hence $\mathbb{E}_{x}\left[N_{x}\right]=\infty$. If x is transient, then $\mathbb{E}_{x}\left[N_{x}\right]=1 / \alpha$ with $\alpha:=\mathbb{P}_{x}\left[\tau_{x}^{1}=\infty\right]>0$. Therefore, one has x is recurrent if and only if $\mathbb{E}_{x}\left[N_{x}\right]=\infty$.

By direct computation, one has

$$
\mathbb{E}_{x}\left[N_{x}\right]=\mathbb{E}_{x}\left[\sum_{n=0}^{\infty} \mathbf{1}_{\left\{X_{n}=x\right\}}\right]=\sum_{n=0}^{\infty} \mathbb{E}_{x}\left[\mathbf{1}_{\left\{X_{n}=x\right\}}\right]=\sum_{n=0}^{\infty} \mathbb{P}_{x}\left[X_{n}=x\right]=\sum_{n=0}^{\infty} P^{n}(x, x)
$$

Therefore, x is recurrent if and only if $\sum_{n=0}^{\infty} P^{n}(x, x)=\infty$.
Example 3.20. Let us consider the random walk $\left(X_{n}\right)_{n \geq 0}$, with $X_{n}:=\sum_{k=1}^{n} \xi_{k}$, where $\left(\xi_{k}\right)_{k \geq 1}$ is an i.i.d. sequence of random variable such that $\mathbb{P}\left[\xi_{1}=1\right]=p$ and $\mathbb{P}\left[\xi_{1}=-1\right]=1-p$, for some $p \in[0,1]$.
(i) When $p=\frac{1}{2}$, one has

$$
\mathbb{P}\left[X_{2 n}=0\right]=C_{2 n}^{n} 2^{-2 n}=\frac{(2 n)!}{n!n!} 2^{-2 n}
$$

By Stirling formula: $n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$, it follows that

$$
\mathbb{P}\left[X_{2 n}=0\right] \approx \frac{1}{\sqrt{\pi n}}, \quad \text { and hence } \sum_{n=0}^{\infty} P^{n}(0,0)=\infty
$$

Therefore, X is recurrent when $p=\frac{1}{2}$.
(ii) When $p \neq \frac{1}{2}$, we compute that

$$
\mathbb{P}_{0}\left[X_{2 n}=0\right]=C_{2 n}^{n} p^{n}(1-p)^{n} \approx \frac{(4 p(1-p))^{n}}{\sqrt{\pi n}} \approx \frac{1}{\sqrt{\pi}} n^{-1 / 2} \alpha^{n},
$$

where $\alpha:=4 p(1-p)<1$. Therefore, X is transient when $p \neq \frac{1}{2}$.
Definition 3.21. (i) A set $B \subset S$ is called a class if it is irreducible and there does not exist a couple (x, y) such that $x \in B, y \notin B$ and $x \leftrightarrow y$.
(ii) A set $B \subset S$ is closed if there is no (x, y) such that $x \in B, y \notin B$ and $x \rightarrow y$.
(iii) A state $x \in S$ is absorbing if $\{x\}$ is closed.
(iv) Let $x \in S$, the period of x, denoted by $d(x)$, is the greatest common denominator of the return time set

$$
R(x):=\left\{n \in \mathbb{N}: P^{n}(x, x)>0\right\} .
$$

We use the convention that $d(x)=1$ if $R(x)=\emptyset$.
We say that the state $x \in S$ is aperiodic if $d(x)=1$.
Proposition 3.22. Let $x \leftrightarrow y$. Then x and y are both recurrent or both transient.

Proof. As $x \leftrightarrow y$, there exists $k, \ell \geq 0$ such that $P^{k}(x, y)>0$ and $P^{\ell}(y, x)>0$, so that $\alpha:=P^{k}(x, y) P^{\ell}(y, x)>0$. Then

$$
P^{k+n+\ell}(x, x) \geq P^{k}(x, y) P^{n}(y, y) P^{\ell}(y, x)=\alpha P^{n}(y, y)
$$

Assume that x is transient so that $\sum_{n=0}^{\infty} P^{n}(x, x)<\infty$. Then

$$
\sum_{n \geq 0} P^{n}(y, y) \leq \frac{1}{\alpha} \sum_{n \geq 0} P^{n+k+\ell}(x, x)<\infty
$$

and hence y is also transient.
If x is recurrent, then y cannot be transient. Otherwise, if y is transient then x must also be transient, which contradicts the fact that x is recurrent. Therefore, y must also be recurrent.

Remark 3.23. Let $x \leftrightarrow y$. By the same arguments,

$$
x \text { and } y \text { are transient } \Longleftrightarrow \sum_{n=0}^{\infty} P^{n}(y, x)<\infty
$$

Proposition 3.24. Let X be a Markov chain with a finite state space X. Then there exists a state $x \in S$ which is recurrent.

Consequently, if X is in addition irreducible, then every state is recurrent.
Proof. Let us fix $y \in S$, then

$$
\sum_{x \in S} \sum_{n \geq 0} P^{n}(y, x)=\sum_{n \geq 0} \sum_{x \in S} \mathbb{P}_{y}\left[X_{n}=x\right]=\sum_{n \geq 0} \mathbb{P}_{y}\left[X_{n} \in S\right]=\infty .
$$

When S is finite, there must be some $x \in S$ such that

$$
\sum_{n \geq 0} P^{n}(y, x)=\infty
$$

Next, let us denote

$$
Q^{m}(y, x):=\mathbb{P}_{y}\left[X_{0}=y, X_{1} \neq x, \cdots, X_{m-1} \neq x, X_{m}=x\right]=\mathbb{P}_{y}\left[\tau_{x}^{1}=m\right] .
$$

Then

$$
\begin{aligned}
\sum_{n \geq 0} P^{n}(y, x) & =\sum_{n \geq 0} \sum_{m=1}^{n} Q^{m}(y, x) P^{n-m}(x, x)=\sum_{m \geq 0} \sum_{n=m}^{\infty} Q^{m}(y, x) P^{n-m}(x, x) \\
& =\sum_{m \geq 0} \sum_{n \geq 0} Q^{m}(y, x) P^{n}(x, x)=\left(\sum_{m \geq 0} Q^{m}(y, x)\right)\left(\sum_{n \geq 0} P^{n}(x, x)\right) .
\end{aligned}
$$

As $\sum_{n \geq 0} P^{n}(y, x)=\infty$ and $\sum_{m \geq 0} Q^{m}(y, x) \leq 1$, we must have $\sum_{n \geq 0} P^{n}(x, x)=\infty$. Hence x is recurrent.

Remark 3.25. For a class $B \subset S$, either all states in B are recurrent, or all states in B are transient.

Proposition 3.26. Let $B \subset S$ be a recurrent class, then B is closed.

Proof. If B is not closed, then there exists a couple $(x, y) \in S \times S$ such that

$$
x \in B, x \notin B, x \rightarrow y \text { and } y \nrightarrow x .
$$

Since $x \rightarrow y$, one has $\alpha:=\mathbb{P}_{x}\left[\tau_{y}^{1}=\infty\right]<1$. Further, as $x \in B$ is recurrent, then

$$
\begin{aligned}
1= & \mathbb{P}_{x}\left[\sum_{m=0}^{\infty} \mathbf{1}_{\left\{X_{m}=x\right\}}=\infty\right] \\
= & \sum_{n \geq 0} \mathbb{P}_{x}\left[\sum_{m=0}^{\infty} \mathbf{1}_{\left\{X_{m}=x\right\}}=\infty \mid \tau_{y}^{1}=n\right] \mathbb{P}_{x}\left[\tau_{y}^{1}=n\right] \\
& +\sum_{n \geq 0} \mathbb{P}_{x}\left[\sum_{m=0}^{\infty} \mathbf{1}_{\left\{X_{m}=x\right\}}=\infty \mid \tau_{y}^{1}=\infty\right] \mathbb{P}_{x}\left[\tau_{y}^{1}=\infty\right] \quad=0+\alpha<1 .
\end{aligned}
$$

In above, we use the computation that

$$
\mathbb{P}_{x}\left[\sum_{m=0}^{\infty} \mathbf{1}_{\left\{X_{m}=x\right\}}=\infty \mid \tau_{y}^{1}=n\right]=\mathbb{P}_{y}\left[\sum_{m \geq n} \mathbf{1}_{\left\{X_{m}=x\right\}}=\infty\right]=0
$$

as $y \nrightarrow x$. We notice that $1<1$ is a contradiction, hence B must be closed.
Proposition 3.27. Let $x \leftrightarrow y$, then $d(x)=d(y)$.
Proof. Since $x \leftrightarrow y$, and hence there exists $m, n>0$ such that

$$
P^{m}(x, y)>0, \quad P^{n}(y, x)>0 .
$$

In particular, one has $P^{m+n}(x, x)>0$ and hence $m+n \in R(x)$.
If $k \in R(y)$, then $P^{k}(y, y)>0$, and hence

$$
P^{m+n+k}(x, x) \geq P^{m}(x, y) P^{k}(y, y) P^{n}(y, x)>0 .
$$

Therefore, $m+n+k \in R(x)$. This implies that

$$
\frac{m+n}{d(x)} \in \mathbb{Z}, \quad \text { and } \quad \frac{m+n+k}{d(x)} \in \mathbb{Z} \text { and hence } \frac{k}{d(x)} \in \mathbb{Z}
$$

In particular, $d(x)$ divides k for all $k \in R(y)$, and hence $d(x) \leq d(y)$.
Similarly, one has $d(y) \leq d(x)$ and hence one must have $d(x)=d(y)$.

3.3 Stationary measure

Definition 3.28. (i) We say $\mu=(\mu(x))_{x \in S}$ is a measure on S if $\mu(x) \geq 0$ for all $x \in S$. A measure μ is a distribution on S if $\sum_{x \in S} \mu(x)=1$.
(ii) A measure μ on S is called a stationary measure if

$$
\mu P=\mu, \text { i.e. } \sum_{x \in S} \mu(x) P(x, y)=\mu(y), \text { for all } y \in S \text {. }
$$

Remark 3.29. Let μ a stationary distribution and $X_{0} \sim \mu$. Then one can deduce that $X_{1} \sim \mu$, $\cdots, X_{n} \sim \mu$.

Example 3.30. (i) $P=I_{n}$, then every distribution is a stationary distribution.
(ii) Let

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Then $\mu=\left(\frac{1}{2}, \frac{1}{2}\right)$ is a stationary distribution.
(iii) Let

$$
P=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then both $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ and $(0,0,1)$ are stationary distributions.
Lemma 3.31. Let X be an irreducible Markov chain and μ be a stationary measure. Assume that there exists $x \in S$ such that $\mu(x) \in(0, \infty)$. Then $\mu(y) \in(0, \infty)$ for all $y \in S$.

Proof. Since the Markov chain is irreducible, then for any $y \in S$, there exists $m, n \geq 1$ such that $P^{m}(x, y)>0$ and $P^{n}(y, x)>0$. Therefore, when $\mu(x)>0$, one has

$$
\mu(y)=\mu P^{m}(y)=\sum_{z \in S} \mu(z) P^{m}(z, y) \geq \mu(x) P^{m}(x, y)>0 .
$$

Similarly, when $\mu(x)<\infty$, one has

$$
\infty>\mu(x)=\mu P^{n}(x) \geq \mu(y) P^{n}(y, x) \Longrightarrow \mu(y)<\infty .
$$

This concludes the proof.
Lemma 3.32. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be an affine function, i.e. $f\left(\lambda_{1} x_{1}+\cdots+\lambda_{m} x_{m}\right)=\lambda_{1} f\left(x_{1}\right)+$ $\cdots+\lambda_{m} f\left(x_{m}\right)$ for all $\lambda_{1}, \cdots, \lambda_{m} \geq 0$ such that $\sum_{k} \lambda_{k}=1$. Let $K \subset \mathbb{R}^{n}$ be a convex compacty set such that $f(K) \subset K$. Then there exists a fixed point $x \in K$ of f, i.e. $f(x)=x$.

Proof. Let us take a arbitrary point $x_{1} \in K$, and defines $\left(x_{n}\right)_{n \geq 1}$ as follows:

$$
x_{n}:=\frac{1}{n} \sum_{k=0}^{n-1} f^{(k)}\left(x_{1}\right), \quad \text { where } f^{(k)}=f \circ \cdots \circ f \text { with } k \text { times composition. }
$$

Notice that $f(K) \subset K$ and K is convex, one has $x_{n} \in K$.
Further, as f is affine, one has

$$
f\left(x_{n}\right)=f\left(\frac{1}{n} \sum_{k=0}^{n-1} f^{(k)}\left(x_{1}\right)\right)=\frac{1}{n} \sum_{k=0}^{n-1} f^{(k+1)}\left(x_{1}\right)=x_{n}+\frac{1}{n}\left(f^{(n)}\left(x_{1}\right)-x_{1}\right) .
$$

Hence

$$
\left|f\left(x_{n}\right)-x_{n}\right| \longrightarrow 0, \text { as } n \longrightarrow \infty
$$

Moreover, as K is compact, along a possible subsequence $\left(n_{k}\right)_{k \geq 1}$, one has $x_{n_{k}} \rightarrow x_{\infty} \in K$ so that $f\left(x_{n_{k}}\right) \rightarrow f\left(x_{\infty}\right)$ by continuity of f. Therefore, one must have $f\left(x_{\infty}\right)=x_{\infty}$.

Theorem 3.2. Let X be a Markov chain with a finite state space S. Then there exists a stationary distribution.
Assume in addition that X is irreducible, then there exists a unique stationary distribution.
Proof. (i) Assume that $S=\{1,2, \cdots, n\}$ so that we denote a distribution by $\mu=(\mu(1), \cdots, \mu(n))$. Then the space of all distribution

$$
K:=\left\{x \in \mathbb{R}^{n}: x_{k} \geq 0, \forall k, \text { and } \sum_{k=1}^{n} x_{k}=1\right\}
$$

is a compact and convex subset of \mathbb{R}^{n}. Further $f: K \longrightarrow K$ defined by

$$
f(\mu):=\mu P
$$

is clearly an affine function. Then we can apply Lemma 3.32 to find a stationary distribution.
(ii) Assume in addition that X is irreducible, and μ and π be two stationary distribution. Then by Lemma 3.31, one has $\mu(i)>0$ and $\pi(i)>0$ for all $i \in S$. Let $k \in S$ be such that

$$
\frac{\mu(k)}{\pi(k)}=\min _{i \in S} \frac{\mu(i)}{\pi(i)},
$$

so that

$$
\mu(i) \geq \frac{\mu(k)}{\pi(k)} \pi(i), \text { for all } i \in S
$$

Then

$$
\mu(k)=(\mu P)(k)=\sum_{i \in S} \mu(i) P(i, k) \geq \sum_{i \in S} \frac{\mu(k)}{\pi(k)} \pi(i) P(i, k)=\frac{\mu(k)}{\pi(k)}(\pi P)(k)=\mu(k) .
$$

This implies that the inequality " $\geq^{\prime \prime}$ in above should be an equality, so that

$$
\mu(i)=\frac{\mu(k)}{\pi(k)} \pi(i), \text { for all } i \in S
$$

Equivalently,

$$
\frac{\mu(i)}{\pi(i)}=\frac{\mu(k)}{\pi(k)}, \text { for all } i \in S
$$

Notice that both μ and π are distributions, hence their total mass are both 1 . Then $\mu=\pi$.
Theorem 3.3. Let X be a Markov chain, recall that $\tau_{x}^{1}:=\inf \left\{n \geq 1: X_{n}=x\right\}$. Let $x \in S$ be a fixed recurrent state, we define

$$
\mu_{x}(y):=\mathbb{E}_{x}\left[\sum_{n=0}^{\tau_{x}^{1}-1} \mathbf{1}_{\left\{X_{n}=y\right\}}\right], \quad \text { for each } y \in S
$$

Then μ_{x} is a stationary measure such that $\mu_{x}(x)=1$ and $\mu_{x}(y) \in(0, \infty)$ for all $y \in S$.
Proof. (i) Since the fixed state $x \in S$ is recurrent, one has $\tau_{x}^{1}<\infty, \mathbb{P}_{x}$-a.s. Then

$$
\sum_{n=0}^{\tau_{x}^{1}-1} \mathbf{1}_{\left\{X_{n}=y\right\}}=\sum_{n=1}^{\tau_{x}^{1}} \mathbf{1}_{\left\{X_{n}=y\right\}}+\mathbf{1}_{\left\{X_{0}=y\right\}}-\mathbf{1}_{\left\{X_{\tau_{x}^{1}}=y\right\}} .
$$

Notice that $X_{0}=x$ and $X_{\tau_{x}^{1}}=x, \mathbb{P}_{x}$-a.s. Then

$$
\begin{aligned}
\mu_{x}(y) & =\mathbb{E}_{x}\left[\sum_{n=0}^{\tau_{x}^{1}-1} \mathbf{1}_{\left\{X_{n}=y\right\}}\right]=\mathbb{E}_{x}\left[\sum_{n=1}^{\tau_{x}^{1}} \mathbf{1}_{\left\{X_{n}=y\right\}}\right] \\
& =\mathbb{E}_{x}\left[\sum_{n=1}^{\infty} \mathbf{1}_{\left\{X_{n}=y\right\}} \mathbf{1}_{\left\{n \leq \tau_{x}^{1}\right\}}\right]=\sum_{n=1}^{\infty} \mathbb{E}_{x}\left[\mathbf{1}_{\left\{X_{n}=y\right\}} \mathbf{1}_{\left\{n \leq \tau_{x}^{1}\right\}}\right] .
\end{aligned}
$$

Next, notice that $\left\{n \leq \tau_{x}^{1}\right\}=\left\{\tau_{x}^{1} \leq n-1\right\}^{c} \in \mathcal{F}_{n-1}^{X}$, it follows that

$$
\mathbb{E}_{x}\left[\mathbf{1}_{\left\{X_{n}=y\right\}} \mathbf{1}_{\left\{n \leq \tau_{x}^{1}\right\}}\right]=\mathbb{E}_{x}\left[\mathbf{1}_{\left\{n \leq \tau_{x}^{1}\right\}} \mathbb{E}_{x}\left[\mathbf{1}_{\left\{X_{n}=y\right\}} \mid \mathcal{F}_{n-1}^{X}\right]\right]=\mathbb{E}_{x}\left[\mathbf{1}_{\left\{n \leq \tau_{x}^{1}\right\}} P\left(X_{n-1}, y\right)\right] .
$$

Therefore,

$$
\begin{aligned}
\mu_{x}(y) & =\sum_{n=1}^{\infty} \mathbb{E}_{x}\left[\mathbf{1}_{\left\{X_{n}=y\right\}} P\left(X_{n-1}, y\right)\right]=\mathbb{E}_{x}\left[\sum_{n=1}^{\tau_{x}^{1}} P\left(X_{n-1}, y\right)\right] \\
& =\mathbb{E}_{x}\left[\sum_{n=0}^{\tau_{x}^{1}-1} P\left(X_{n}, y\right)\right]=\mathbb{E}_{x}\left[\sum_{n=0}^{\tau_{x}^{1}-1} \sum_{z \in S} P(z, y) \mathbf{1}_{\left\{X_{n}=z\right\}}\right] \\
& =\sum_{z \in S} \mathbb{E}_{x}\left[\sum_{n=0}^{\tau_{x}^{1}-1} \mathbf{1}_{\left\{X_{n}=z\right\}}\right] P(z, y)=\sum_{z \in S} \mu_{x}(z) P(z, y) .
\end{aligned}
$$

This proves that μ_{x} is a stationary measure.
Finally, notice that $X_{0}=x, X_{n} \neq x$ for all $n=1, \cdots, \tau_{x}^{1}-1$. Then $\mu_{x}(x)=1$ by its definition. We can then use Lemma 3.31 to conclude that $\mu_{x}(y) \in(0, \infty)$ for all $y \in S$.

Remark 3.33. Notice that μ_{x} is only a stationary measure, but not a stationary distribution, in Theorem 3.3.

Proposition 3.34. Let X be a recurrent and irreducible Markov chain. Let us fix $x \in S$ so that μ_{x} defined in Theorem 3.3 is a stationary measure. Let ν be another stationary measure such that $\nu(y) \in(0, \infty)$ for all $y \in S$. Then there exists a constant $C>0$ such that $\nu(y)=C \mu_{x}(y)$ for all $y \in S$.

Proof. First, let us recall that, for $y \neq x$,

$$
\mu_{x}(y):=\mathbb{E}_{x}\left[\sum_{n=0}^{\tau_{x}^{1}-1} \mathbf{1}_{\left\{X_{n}=y\right\}}\right]=\sum_{n=1}^{\infty} \mathbb{E}_{x}\left[\mathbf{1}_{\left\{X_{n}=y ; n<\tau_{x}^{1}\right\}}\right]=\sum_{n=1}^{\infty} \mathbb{P}_{x}\left[X_{n}=y ; n<\tau_{x}^{1}\right] .
$$

Next, multiplying $\nu(y)$ by the same constant $C>0$ for all y, one obtains again a stationary measure. One can then assume without loss of generality that

$$
\nu(x)=\mu_{x}(x)=1 .
$$

We next claim that, for all $y \neq x$ and all $N \geq 1$,

$$
\begin{equation*}
\nu(y) \geq \sum_{n=1}^{N} \mathbb{P}_{x}\left[X_{n}=y ; n<\tau_{x}^{1}\right] . \tag{12}
\end{equation*}
$$

Taking $N \longrightarrow \infty$, it follows that

$$
\nu(y) \geq \sum_{n=1}^{\infty} \mathbb{P}_{x}\left[X_{n}=y ; n<\tau_{x}^{1}\right]=\mu_{x}(y), \text { for all } y \neq x
$$

Therefore, one has

$$
\frac{\nu(x)}{\mu_{x}(x)}=1 \leq \min _{y \in S} \frac{\nu(y)}{\mu_{x}(y)}
$$

One can then conclude by exactly the same arguments as in Part (ii) in the proof of Theorem 3.2 to conclude that

$$
\nu(y)=\mu_{x}(y), \text { for all } y \in S
$$

To conclude, it is then enough to prove the claim in (12). First, it holds true for $N=1$ since for $y \neq x$,

$$
\nu(y)=(\nu P)(y) \geq \nu(x) P(x, y)=P(x, y)=\mathbb{P}_{x}\left[X_{1}=y ; 2<\tau_{x}^{1}\right] .
$$

Next, assume that (12) holds true for $N \geq$ 1, i.e.

$$
\nu(y) \geq \sum_{n=1}^{N} \mathbb{P}_{x}\left[X_{n}=y ; n<\tau_{x}^{1}\right],
$$

we then consider the case $N+1$. Recall that ν is a stationary measure such that $\nu(x)=1$, then for $y \neq x$,
$\nu(y)=\sum_{z \in S} \nu(z) P(z, y)=P(x, y)+\sum_{z \neq x} \nu(z) P(z, y) \geq P(x, y)+\sum_{n=1}^{N} \sum_{z \neq x} \mathbb{P}_{x}\left[X_{n}=z ; n<\tau_{x}^{1}\right] P(z, y)$.
By direct computation,

$$
\begin{aligned}
\sum_{z \neq x} \mathbb{P}_{x}\left[X_{n}=z ; n<\tau_{x}^{1}\right] P(z, y) & =\sum_{z \neq x} \mathbb{P}_{x}\left[X_{1} \neq x, \cdots, X_{n-1} \neq x, X_{n}=z\right] P(z, y) \\
& =\mathbb{P}_{x}\left[X_{1} \neq x, \cdots, X_{n-1} \neq x, X_{n} \neq x, X_{n+1}=y\right] \\
& =\mathbb{P}_{x}\left[X_{n+1}=y ; n+1<\tau_{x}^{1}\right]
\end{aligned}
$$

Therefore,

$$
\nu(y) \geq P(x, y)+\sum_{n=1}^{N} \mathbb{P}_{x}\left[X_{n+1}=y ; n+1<\tau_{x}^{1}\right]=\sum_{n=1}^{N+1} \mathbb{P}_{x}\left[X_{n}=y ; n<\tau_{x}^{1}\right],
$$

i.e. (12) holds true for the case $N+1$. We can then finish the proof of claim (12) for all $N \geq 1$ by induction, which concludes the proof of the proposition.

Proposition 3.35. Let X be a recurrent and irreducible Markov chain. Assume that $\mathbb{E}_{x}\left[\tau_{x}^{1}\right]<\infty$ for some $x \in S$. Then $\mathbb{E}_{y}\left[\tau_{y}^{1}\right]<\infty$ for all $y \in S$. Moreover,

$$
\pi(y):=\frac{1}{\mathbb{E}_{y}\left[\tau_{y}^{1}\right]}, y \in S, \text { defines the unique stationary distribution. }
$$

Proof. (i) Given the fixed state $x \in S$ such that $\mathbb{E}_{x}\left[\tau_{x}^{1}\right]<\infty$, we recall that μ_{x} defined in Theorem 3.3 is a stationary measure. In particular, one has $\mu_{x}(x)=1$ and $\mu_{x}(y) \in(0, \infty)$ for all $y \in S$.

Further, by direct computation

$$
\sum_{y \in S} \mu_{x}(y)=\sum_{y \in S} \mathbb{E}_{x}\left[\sum_{n=0}^{\tau_{x}^{1}-1} \mathbf{1}_{\left\{X_{n}=y\right\}}\right]=\mathbb{E}_{x}\left[\sum_{n=0}^{\tau_{x}^{1}-1} \sum_{y \in S} \mathbf{1}_{\left\{X_{n}=y\right\}}\right]=\mathbb{E}_{x}\left[\tau_{x}^{1}\right]<\infty
$$

Then by renormalization, $\pi_{x}(y):=\frac{\mu_{x}(y)}{\mathbb{E}_{x}\left[\tau_{x}^{1}\right]}$ for all $y \in S$ defines a stationary distribution $\pi_{x}=$ $\left(\pi_{x}(y)\right)_{y \in S}$. In particular, one has

$$
\pi_{x}(x)=\frac{1}{\mathbb{E}_{x}\left[\tau_{x}^{1}\right]}
$$

(ii) Let us consider an arbitrary $z \in S$, which is also recurrent, so that one obtains a stationary measure $\mu_{z}=\left(\mu_{z}(y)\right)_{y \in S}$. By Proposition 3.34, there exists a constant $C>0$ such that $\mu_{z}(y)=$ $C \mu_{x}(y)$ for all $y \in S$. Therefore, one has

$$
\mathbb{E}_{z}\left[\tau_{z}^{1}\right]=\sum_{y \in S} \mu_{z}(y)=C \sum_{y \in S} \mu_{x}(y)=C \mathbb{E}_{x}\left[\tau_{x}^{1}\right]<\infty
$$

One can then obtain a stationary measure π_{z} defined by $\pi_{z}(y):=\frac{\mu_{z}(y)}{\mathbb{E}_{z}\left[\tau_{z}^{1}\right]}$ for all $y \in S$. Similarly, one has

$$
\pi_{z}(z)=\frac{1}{\mathbb{E}_{z}\left[\tau_{z}^{1}\right]}
$$

Finally, in view of Proposition 3.34, there exists at most one stationary distribution. Therefore, $\pi_{x}=\pi_{z}$ for all $z \in S$, which concludes the proof.

Example 3.36. (i) Random walk on Z.
(ii) Random walk on graph.
(iii) Ehrenfest model.

