MMAT 5340 Assignment \#6
Please submit your assignment online on Blackboard Due at 23:59 p.m. on Tuesday, Mar.12, 2024

1. Let $S=\{1,2\}$ be the state space of a Markov chain $X=\left(X_{n}\right)_{n \geq 0}$, with transition matrix:

$$
P=\left[\begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.7
\end{array}\right] .
$$

Let the initial distribution of the Markov chain be given by $\mu=\left[\begin{array}{l}0.5 \\ 0.5\end{array}\right]$, i.e. $\mathbb{P}\left[X_{0}=1\right]=$ $\mathbb{P}\left[X_{0}=2\right]=0.5$.
(a) Find eigenvalues $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and eigenvectors $v_{1}, v_{2} \in \mathbb{R}^{2}$ of the matrix P,

$$
\text { i.e. } P v_{1}=\lambda_{1} v_{1} \text { and } P v_{2}=\lambda_{2} v_{2} \text {. }
$$

(b) Find the matrices V and V^{-1}, such that $V V^{-1}=I_{2}$, and

$$
P=V\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] V^{-1}
$$

where I_{2} denotes the 2×2 identity matrix, and V^{-1} is the inverse of matrix V.
(c) Let μ_{n} denote the law of X_{n}, i.e. $\mathbb{P}\left[X_{n}=1\right]=\mu_{n}(1)$ and $\mathbb{P}\left[X_{n}=2\right]=\mu_{n}(2)$. Compute

$$
P^{n} \text { and then } \mu_{n}:=\mu^{\top} P^{n} .
$$

(d) Compute

$$
P^{\infty}:=\lim _{n \rightarrow \infty} P^{n} \text { and } \mu_{\infty}^{\top}:=\mu^{\top} P^{\infty}=\lim _{n \rightarrow \infty} \mu^{\top} P^{n} .
$$

Then deduce that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[X_{n}=1\right]=\frac{3}{8} \text { and } \lim _{n \rightarrow \infty} \mathbb{P}\left[X_{n}=2\right]=\frac{5}{8}
$$

(e) Verify that $\mu_{\infty}^{\top} P=\mu_{\infty}^{\top}$.
(f) Assume that $\mathbb{P}\left[X_{0}=1\right]=\frac{3}{8}$ and $\mathbb{P}\left[X_{1}=2\right]=\frac{5}{8}$, prove that

$$
\mathbb{P}\left[X_{1}=1\right]=\frac{3}{8} \text { and } \mathbb{P}\left[X_{2}=2\right]=\frac{5}{8}
$$

(Remark: the measure (vector) $\mu_{\infty}=\binom{3 / 8}{5 / 8}$ is called the invariant measure of the Markov chain.)

