THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT 5120 (2023-24, Term 1)
 Topics in Geometry
 Quiz 3 solution
 23rd November 2023, 8:15pm - 9:00pm

- Write your Name and Student ID on the front page.
- Give adequate explanation and justification for all your calculations and observations, and write all your proofs in a clear and rigorous way.
- Answer all 3 questions.

We use the following notations: the imaginary unit $\sqrt{-1}$ is denoted as \mathbf{i}, the open unit disk $\{z \in \mathbb{C}:|z|<1\}$ is denoted as \mathbb{D}, and the group of transformations on \mathbb{D} is denoted as \mathbf{H}.

1. Show directly that a hyperbolic transformation $T \in \mathbf{H}$ given by

$$
T(z)=e^{\mathbf{i} \theta} \frac{z-z_{0}}{1-\bar{z}_{0} z},
$$

where $\left|z_{0}\right|<1$ and $\theta \in \mathbb{R}$, indeed maps the unit circle $\partial \mathbb{D}$ onto itself, i.e. show that $|T(z)|=1$ if and only if $|z|=1$ by direct computations.

Solution. (a) If $|z|=1,|T(z)|=\left|\frac{z-z_{0}}{1-z_{0} z}\right|=\left|z \frac{1-\frac{z_{0}}{z}}{1-z_{0} z}\right|=\left|\frac{1-z_{0} \bar{z}}{1-z_{0} z}\right|=1$ since $z=\frac{1}{\bar{z}}$ if $|z|=1$.
(b) If $|T(z)|=1$,

$$
\left|\frac{z-z_{0}}{1-\bar{z}_{0} z}\right|=1 \Rightarrow\left|z-z_{0}\right|=\left|1-\overline{z_{0}} z\right| \Rightarrow\left|z-z_{0}\right|^{2}=\left|1-\overline{z_{0}} z\right|^{2}
$$

Since we have $|w|^{2}=w \bar{w}$,

$$
\left|z-z_{0}\right|^{2}=\left|1-\bar{z}_{0} z\right|^{2} \Rightarrow\left(z-z_{0}\right)\left(\bar{z}-\bar{z}_{0}\right)=\left(1-z_{0} \bar{z}\right)\left(z-\bar{z}_{0} z\right)
$$

By cancel the same terms on both sides,

$$
\left(1-|z|^{2}\right)\left(1-\left|z_{0}\right|^{2}\right)=0 \Rightarrow|z|=1
$$

2. Show that a Möbius transformation of the form

$$
T(z)=\frac{a z+b}{\bar{b} z+\bar{a}},
$$

where $|a|^{2}-|b|^{2}>0$, is an element in hyperbolic group, and conversely, any element of hyperbolic group $T \in \mathbf{H}$ is of this form.

Solution. Recall that any element of hyperbolic group can be written as

$$
e^{\mathrm{i} \theta} \frac{z-z_{0}}{1-\bar{z}_{0} z}
$$

for some $\left|z_{0}\right|<1$
(a) Let $T(z)=\frac{a z+b}{b z+\bar{a}}$, then we have

$$
T(z)=\frac{a\left(z+\frac{b}{a}\right)}{\bar{a}\left(1+\frac{\bar{b}}{\bar{a}} z\right)}
$$

It is easy to see we can assume $e^{i \theta}=\frac{a}{\bar{a}}$ and $z_{0}=-\frac{b}{a}$.
(b) Conversely if

$$
T(z)=e^{i \theta} \frac{z-z_{0}}{-\bar{z}_{0} z+1}=\frac{e^{i \frac{\theta}{2}} z-e^{i \frac{\theta}{2}} z_{0}}{-e^{i \frac{-\theta}{2}} \overline{z_{0}} z+e^{i \frac{-\theta}{2}}}
$$

then let $a=e^{i \frac{\theta}{2}}$ and $b=-e^{i \frac{\theta}{2}} z_{0}$. We get the result we desired.
3. Show that the circumference of a hyperbolic circle of hyperbolic radius R is precisely given by $2 \pi \sinh R$.

Solution. Note that the hyperbolic length is preserved by hyperbolic group, thus the circumference of any hyperbolic circle is the same as circumference of hyperbolic circle centered at 0 with the same hyperbolic radius. Hence we only need to compute the circumference of $C_{\text {hyperbolic }}(0, R)$ which is just the Euclidean circle $C_{\text {Euclidean }}(0, r)$ where $r=\tanh (R / 2)$, then the circumference

$$
\begin{aligned}
\ell & =2 \int_{0}^{2 \pi} \frac{\left|z^{\prime}(\theta)\right| d \theta}{1-|z(\theta)|^{2}} \\
& =2 \int_{0}^{2 \pi} \frac{r d \theta}{1-r^{2}} \\
& =\frac{4 \pi r}{1-r^{2}} \\
& =\frac{4 \pi \tanh (R / 2)}{1-\tanh ^{2}(R / 2)} \\
& =\frac{4 \pi \tanh ^{2}(R / 2)}{\operatorname{sech}^{2}(R / 2)} \\
& =2 \pi \cdot 2 \sinh (R / 2) \cosh (R / 2)=2 \pi \sinh R
\end{aligned}
$$

