THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT 5120 (2023-24, Term 1) Topics in Geometry Quiz 2 solution 27th October 2023

• Write your Name and Student ID on the front page.

• Give adequate explanation and justification for all your calculations and observations, and write all your proofs in a clear and rigorous way.

• Answer all 3 questions.

We always denote by i the imaginary unit $\sqrt{-1}$, by $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ the extended complex plane, and by M the group of Möbius transformations.

1. Let z_1, z_2, z_3 be distinct points on $\hat{\mathbb{C}}$, and w be any point on $\hat{\mathbb{C}}$. Show that there exists $z \in \hat{\mathbb{C}}$ such that $(z, z_1, z_2, z_3) = w$.

Solution. Because z_1, z_2, z_3 are distinct points, by definition of cross ratio, (z, z_1, z_2, z_3) is the unique Möbius transformation mapping (z_1, z_2, z_3) to $(1, 0, \infty)$. Hence it has an inverse Möbius transformation $T^{-1}(z)$ (by using fundamental theorem of Möbius geometry) and so that it is surjective. Thus for any equation T(z) = w we have one solution. Caution: Because we work on the extended complex plane, we need to consider the case when z_1, z_2, z_3 equal to ∞ if we use local expression of Möbius transformation!

2. Let

$$\frac{1}{T(z)-p} = \frac{1}{z-p} + \beta$$

be the normal form of a parabolic transformation $T \in \mathbf{M}$ whose fixed point p is not ∞ . Show that

$$\beta = -\frac{1}{z_0 - p} = \frac{1}{T(\infty) - p},$$

where z_0 is the point such that $T(z_0) = \infty$.

Solution. Since ∞ is not the fixed point, we have $p \neq z_0 \neq 0$ such that $T(0) = \infty$ and $p \neq T(\infty) \neq \infty$. If we let $z = z_0$, by the normal form,

$$\frac{1}{\infty - p} = \frac{1}{z_0 - p} + \beta \Rightarrow \beta = -\frac{1}{z_0 - p}$$

similarly, let $z = \infty$,

$$\frac{1}{T(\infty) - p} = \frac{1}{\infty - p} + \beta \Rightarrow \beta = \frac{1}{T(\infty) - p}$$

. Here "=" ∞ means taking limit to ∞ .

◀

3. Consider the Möbius transformation $T \in \mathbf{M}$ defined by

$$T(z) = \frac{z}{z - \mathbf{i}}.$$

- (a) Find the fixed point(s) of T.
- (b) Find the normal form of T, hence deciding what type of transformation it is.
- (c) Sketch the appropriate coordinate system of Steiner circles, and use arrows to indicate the motion of T.

Solution. (a) The fixed points of T are given by

$$\frac{z}{z-i} = z$$

thus it has 2 fixed points 0 and 1 + i.

(b) By definition of normal form, it should be

$$\frac{T(z)-0}{T(z)-1-i} = \lambda \frac{z-0}{z-1-i}$$

Note that $T(1) = \frac{1}{1-i}$, thus

$$\frac{\frac{1}{1-i} - 0}{\frac{1}{1-i} - 1 - i} = \lambda \frac{1 - 0}{1 - 1 - i}$$

Hence $\lambda = i$

(c) It is an elliptic transformation,

3