THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT 5120 (2023-24, Term 1) Topics in Geometry Quiz 1 solution 28th September 2023

We always denote by i the imaginary unit $\sqrt{-1}$.

- 1. Compute *both* square roots of the following complex numbers:
 - (a) −4
 - (b) -3i
 - (c) $-1 \sqrt{3}i$

Solution. As we mentioned in Practice 1 problem 5, for each complex number $a \neq 0$, there will be two square roots of a. We write the number as polar coordinate and then compute the square roots of both parts.

- (a) Let $a = -4 = 4 \cdot e^{i\pi}$. Thus the square roots of a are $\sqrt{4} \cdot e^{\frac{i\pi}{2}} = 2i$ and $\sqrt{4} \cdot e^{\frac{3i\pi}{2}} = -2i$. Note that $(e^{i\pi})^2 = (e^{\frac{3i\pi}{2}})^2$.
- (b) Let $a = -3i = 3 \cdot e^{\frac{3i\pi}{2}}$. Similarly the square roots are $\sqrt{3} \cdot e^{\frac{3i\pi}{4}} = -\frac{\sqrt{6}}{2} + i\frac{\sqrt{6}}{2}$ and $\sqrt{3} \cdot e^{\frac{7i\pi}{4}} = \frac{\sqrt{6}}{2} i\frac{\sqrt{6}}{2}$.
- (c) Let $a = -1 \sqrt{3}i = 2 \cdot e^{\frac{4i\pi}{3}}$. Similarly the square roots are $\sqrt{2} \cdot e^{\frac{2i\pi}{3}} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{6}}{2}$ and $\sqrt{2} \cdot e^{\frac{5i\pi}{3}} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{6}}{2}$.
- 2. Find a formula for the counter-clockwise rotation by 30° about the point 1 + i, as a function f(z) from \mathbb{C} to \mathbb{C} .

Solution. This function can be written as a composition of three functions: $f(z) = f_3 \circ f_2 \circ f_1(z)$ where $f_1(z) = z - 1 - i$ translating 1 + i to 0, $f_2(w) = e^{\frac{i\pi}{6}}w$ counter-clockwise rotating the complex plane about 0 by $\frac{\pi}{6}$ and $f_3(t) = t + 1 + i$ translating 0 back to 1 + i. Hence $f(z) = e^{\frac{i\pi}{6}}(z - 1 - i) + 1 + i$.

3. Let \mathbb{S}^2 be the unit sphere $\{(a, b, c) \in \mathbb{R}^3 : a^2 + b^2 + c^2 = 1\}$ in the 3-dimensional Euclidean space \mathbb{R}^3 , and let N = (0, 0, 1) be the north pole on \mathbb{S}^2 . Recall that the stereographic projection is the map $S : \mathbb{S}^2 \setminus \{N\} \to \mathbb{C}$ given by

$$x + \mathbf{i}y = S(a, b, c) = \frac{a + \mathbf{i}b}{1 - c}.$$

Compute the inverse map $S^{-1} : \mathbb{C} \to \mathbb{S}^2 \setminus \{N\}.$

$$c = 1 - \frac{2}{x^2 + y^2 + 1} = \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}.$$

And so

$$a = x(1 - c) = \frac{2x}{x^2 + y^2 + 1},$$

$$b = y(1 - c) = \frac{2y}{x^2 + y^2 + 1}.$$

_	
_	