THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MMAT 5120 (2023-24, Term 1)

Topics in Geometry
Quiz 1 solution
28th September 2023
We always denote by \mathbf{i} the imaginary unit $\sqrt{-1}$.

1. Compute both square roots of the following complex numbers:
(a) -4
(b) $-3 \mathbf{i}$
(c) $-1-\sqrt{3} \mathbf{i}$

Solution. As we mentioned in Practice 1 problem 5, for each complex number $a \neq 0$, there will be two square roots of a. We write the number as polar coordinate and then compute the square roots of both parts.
(a) Let $a=-4=4 \cdot e^{i \pi}$. Thus the square roots of a are $\sqrt{4} \cdot e^{\frac{i \pi}{2}}=2 i$ and $\sqrt{4} \cdot e^{\frac{3 i \pi}{2}}=$ $-2 i$. Note that $\left(e^{i \pi}\right)^{2}=\left(e^{\frac{3 i \pi}{2}}\right)^{2}$.
(b) Let $a=-3 i=3 \cdot e^{\frac{3 i \pi}{2}}$. Similarly the square roots are $\sqrt{3} \cdot e^{\frac{3 i \pi}{4}}=-\frac{\sqrt{6}}{2}+i \frac{\sqrt{6}}{2}$ and $\sqrt{3} \cdot e^{\frac{7 i \pi}{4}}=\frac{\sqrt{6}}{2}-i \frac{\sqrt{6}}{2}$.
(c) Let $a=-1-\sqrt{3} i=2 \cdot e^{\frac{4 i \pi}{3}}$. Similarly the square roots are $\sqrt{2} \cdot e^{\frac{2 i \pi}{3}}=-\frac{\sqrt{2}}{2}+i \frac{\sqrt{6}}{2}$ and $\sqrt{2} \cdot e^{\frac{5 i \pi}{3}}=\frac{\sqrt{2}}{2}-i \frac{\sqrt{6}}{2}$.
2. Find a formula for the counter-clockwise rotation by 30° about the point $1+\mathbf{i}$, as a function $f(z)$ from \mathbb{C} to \mathbb{C}.

Solution. This function can be written as a composition of three functions: $f(z)=f_{3} \circ$ $f_{2} \circ f_{1}(z)$ where $f_{1}(z)=z-1-i$ translating $1+i$ to $0, f_{2}(w)=e^{\frac{i \pi}{6}} w$ counter-clockwise rotating the complex plane about 0 by $\frac{\pi}{6}$ and $f_{3}(t)=t+1+i$ translating 0 back to $1+i$. Hence $f(z)=e^{\frac{i \pi}{6}}(z-1-i)+1+i$.
3. Let \mathbb{S}^{2} be the unit sphere $\left\{(a, b, c) \in \mathbb{R}^{3}: a^{2}+b^{2}+c^{2}=1\right\}$ in the 3-dimensional Euclidean space \mathbb{R}^{3}, and let $N=(0,0,1)$ be the north pole on \mathbb{S}^{2}. Recall that the stereographic projection is the map $S: \mathbb{S}^{2} \backslash\{N\} \rightarrow \mathbb{C}$ given by

$$
x+\mathbf{i} y=S(a, b, c)=\frac{a+\mathbf{i} b}{1-c} .
$$

Compute the inverse map $S^{-1}: \mathbb{C} \rightarrow \mathbb{S}^{2} \backslash\{N\}$.

Solution. We can separate the real and imaginary parts in the equation and obtain $x=$ $\frac{a}{1-c}$ and $y=\frac{b}{1-c}$. Now consider $x^{2}+y^{2}=\frac{a^{2}+b^{2}}{(1-c)^{2}}=\frac{1-c^{2}}{(1-c)^{2}}=\frac{1+c}{1-c}=-1+\frac{2}{1-c}$. Here we can cancel $1-c$ because $c=1$ corresponds to the north pole, which does not correspond to any number in \mathbb{C}. We can then make c the subject,

$$
c=1-\frac{2}{x^{2}+y^{2}+1}=\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1} .
$$

And so

$$
\begin{aligned}
& a=x(1-c)=\frac{2 x}{x^{2}+y^{2}+1} \\
& b=y(1-c)=\frac{2 y}{x^{2}+y^{2}+1}
\end{aligned}
$$

